蚁群算法实现股票因子的特征筛选,将因子IC值作为特征集合评价指标。Python代码实现
时间: 2024-02-13 10:03:21 浏览: 171
以下是使用蚁群算法实现股票因子的特征筛选,将因子IC值作为特征集合评价指标的Python代码实现:
```python
import numpy as np
import pandas as pd
# 读取股票数据
data = pd.read_csv('stock_data.csv')
# 定义特征集合
features = ['ROE', 'PE', 'PB', 'EPS', 'CFPS', 'RSI', 'MACD', 'MA']
# 定义IC值计算函数
def calc_ic(data):
# 计算因子值
factor_values = data[features].values
# 计算收益率
returns = data['returns'].values
# 计算Pearson相关系数
ic = np.corrcoef(factor_values.T, returns)[0, 1]
return ic
# 定义蚂蚁类
class Ant:
def __init__(self, features):
self.features = features
self.ic = 0
def move(self, pheromone, alpha, beta):
# 计算每个特征被选择的概率
probs = pheromone[self.features]**alpha * self.ic**beta
probs /= np.sum(probs)
# 根据概率选择下一步要移动到的特征
next_feature = np.random.choice(self.features, p=probs)
self.features.remove(next_feature)
return next_feature
# 定义蚁群算法类
class ACO:
def __init__(self, data, features, ant_count=10, max_iter=100, alpha=1, beta=1, rho=0.5):
self.data = data
self.features = features
self.ant_count = ant_count
self.max_iter = max_iter
self.alpha = alpha
self.beta = beta
self.rho = rho
self.ants = []
self.pheromone = np.ones(len(features))
self.best_features = None
self.best_ic = 0
def run(self):
# 初始化蚂蚁
for i in range(self.ant_count):
ant = Ant(self.features)
self.ants.append(ant)
# 迭代搜索
for i in range(self.max_iter):
for ant in self.ants:
# 计算IC值
data = self.data.sample(frac=0.5)
ant.ic = calc_ic(data)
# 移动蚂蚁
while ant.features:
next_feature = ant.move(self.pheromone, self.alpha, self.beta)
# 更新最优特征集合
if ant.ic > self.best_ic:
self.best_features = ant.features
self.best_ic = ant.ic
# 更新信息素浓度
self.pheromone *= self.rho
for feature in self.best_features:
index = self.features.index(feature)
self.pheromone[index] += self.best_ic
return self.best_features, self.best_ic
# 运行蚁群算法
aco = ACO(data, features)
best_features, best_ic = aco.run()
# 输出最优特征集合和IC值
print('Best features:', best_features)
print('Best IC:', best_ic)
```
在上述代码中,我们首先定义了股票数据和特征集合,并定义了一个计算因子IC值的函数。然后,我们定义了一个蚂蚁类和一个蚁群算法类,分别用于实现蚂蚁的移动和信息素浓度的更新。最后,我们运行蚁群算法,并输出最优特征集合和IC值。
阅读全文