matlab编码尖底摆动从动件盘形凸轮轮廓代码
时间: 2023-07-03 22:27:25 浏览: 157
matlab下进行的凸轮轮廓线的设计
4星 · 用户满意度95%
由于尖底摆动从动件盘形凸轮是比较复杂的凸轮形状,没有标准的公式可以计算轮廓,需要通过数值方法来逼近轮廓。以下是一个简单的 MATLAB 代码实现,用来生成尖底摆动从动件盘形凸轮的轮廓:
``` matlab
% 定义凸轮参数
r = 10; % 偏距
a = 20; % 偏心距
b = 30; % 凸轮半径
h = 40; % 凸轮高度
n = 1000; % 绘制点数
% 定义绘制参数
theta = linspace(0, 2*pi, n);
x = zeros(1, n);
y = zeros(1, n);
% 计算凸轮轮廓
for i = 1:n
% 初始猜测点
x0 = b*cos(theta(i));
y0 = b*sin(theta(i));
% 数值迭代求解
for j = 1:10
f = [x0 - (r+a*cos(theta(i)))*cos(atan(y0/(r+a*cos(theta(i)))-a*sin(theta(i))/((r+a*cos(theta(i)))^2)));
y0 - h*cos(atan(y0/(r+a*cos(theta(i)))-a*sin(theta(i))/((r+a*cos(theta(i)))^2))) - (r+a*cos(theta(i)))*sin(atan(y0/(r+a*cos(theta(i)))-a*sin(theta(i))/((r+a*cos(theta(i)))^2)))];
J = [-cos(atan(y0/(r+a*cos(theta(i)))-a*sin(theta(i))/((r+a*cos(theta(i)))^2))) + (r+a*cos(theta(i)))*a*cos(theta(i))/((r+a*cos(theta(i)))^2+(y0/(r+a*cos(theta(i))-a*sin(theta(i))))^2), ...
-1/(1+(y0/(r+a*cos(theta(i))-a*sin(theta(i))))^2)*a/(r+a*cos(theta(i)))*(1/(r+a*cos(theta(i))-a*sin(theta(i))))*sin(theta(i)) - h/(y0^2/(r+a*cos(theta(i))-a*sin(theta(i)))^2+1), ...
0];
dx = -J\f;
x0 = x0 + dx(1);
y0 = y0 + dx(2);
end
x(i) = x0;
y(i) = y0;
end
% 绘制凸轮轮廓
plot(x, y);
axis equal;
```
代码中使用了数值迭代方法来求解凸轮轮廓,具体实现过程较为复杂,需要进行多次迭代才能得到较为精确的结果。最终得到的凸轮轮廓是一个由多个点组成的曲线,通过使用 `plot` 函数将其绘制出来。
阅读全文