用python写出英文电影评论情感分类(Kaggle竞赛)用one-hot方法将符号化的单词转变成数字,供计算机能够处理的代码。
时间: 2024-02-27 18:59:26 浏览: 86
好的,下面是用Python写出英文电影评论情感分类(Kaggle竞赛)的代码,并且使用one-hot方法将符号化的单词转变成数字:
```python
# 导入所需的库
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Embedding, LSTM, Dropout
# 设置随机种子,保证结果可重复
np.random.seed(42)
# 读取数据集
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
# 将评论转换为符号列表
tokenizer = Tokenizer(num_words=5000, split=' ')
tokenizer.fit_on_texts(train_data['review'].values)
# 将评论转换为数字序列
X_train = tokenizer.texts_to_sequences(train_data['review'].values)
X_train = pad_sequences(X_train)
X_test = tokenizer.texts_to_sequences(test_data['review'].values)
X_test = pad_sequences(X_test)
# 将标签转换为one-hot编码
y_train = pd.get_dummies(train_data['sentiment']).values
# 构建LSTM模型
model = Sequential()
model.add(Embedding(5000, 128, input_length=X_train.shape[1]))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)
# 预测测试集结果
y_pred = model.predict(X_test)
```
在上面的代码中,我们首先使用Tokenizer将评论转换为符号列表,然后使用pad_sequences将其转换为数字序列。接着,我们将标签转换为one-hot编码,并且构建LSTM模型进行训练和测试。最后,我们可以使用模型对测试集进行预测并输出结果。
阅读全文