python三维重建代码
时间: 2023-10-13 14:25:56 浏览: 106
三维重建代码
4星 · 用户满意度95%
三维重建是一个比较复杂的问题,需要使用多种技术和算法。以下是一个简单的例子,使用Python和OpenCV库进行基本的三维重建。
首先,需要准备两张图片,一张是左视图,一张是右视图。这两张图片应该是同一场景的不同角度拍摄的。
```python
import cv2
import numpy as np
# 读取左视图和右视图图片
imgL = cv2.imread('left.png')
imgR = cv2.imread('right.png')
```
接下来,需要对图片进行预处理,包括灰度化、去噪和特征点提取。
```python
# 将图片转为灰度图
grayL = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)
grayR = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)
# 去噪
blurL = cv2.GaussianBlur(grayL, (5, 5), 0)
blurR = cv2.GaussianBlur(grayR, (5, 5), 0)
# 特征点提取
sift = cv2.xfeatures2d.SIFT_create()
kpL, desL = sift.detectAndCompute(blurL, None)
kpR, desR = sift.detectAndCompute(blurR, None)
```
接下来,需要进行特征点匹配,使用OpenCV库中的BFMatcher算法进行匹配。
```python
# 特征点匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(desL, desR, k=2)
# 挑选出好的匹配点
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append(m)
# 绘制匹配结果
imgMatch = cv2.drawMatches(imgL, kpL, imgR, kpR, good, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
```
接下来,需要进行立体匹配,使用OpenCV库中的StereoSGBM算法。
```python
# 立体匹配
stereo = cv2.StereoSGBM_create(numDisparities=16, blockSize=15)
disparity = stereo.compute(grayL, grayR)
# 归一化
disp = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
```
最后,使用OpenCV库中的reprojectImageTo3D函数将视差图转换为三维点云。
```python
# 将视差图转换为三维点云
focal_length = 718.856
Q = np.float32([[1, 0, 0, -imgL.shape[1]/2],
[0, 1, 0, -imgL.shape[0]/2],
[0, 0, 0, focal_length],
[0, 0, 1, 0]])
points = cv2.reprojectImageTo3D(disparity, Q)
```
完整代码如下:
```python
import cv2
import numpy as np
# 读取左视图和右视图图片
imgL = cv2.imread('left.png')
imgR = cv2.imread('right.png')
# 将图片转为灰度图
grayL = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)
grayR = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)
# 去噪
blurL = cv2.GaussianBlur(grayL, (5, 5), 0)
blurR = cv2.GaussianBlur(grayR, (5, 5), 0)
# 特征点提取
sift = cv2.xfeatures2d.SIFT_create()
kpL, desL = sift.detectAndCompute(blurL, None)
kpR, desR = sift.detectAndCompute(blurR, None)
# 特征点匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(desL, desR, k=2)
# 挑选出好的匹配点
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append(m)
# 绘制匹配结果
imgMatch = cv2.drawMatches(imgL, kpL, imgR, kpR, good, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
# 立体匹配
stereo = cv2.StereoSGBM_create(numDisparities=16, blockSize=15)
disparity = stereo.compute(grayL, grayR)
# 归一化
disp = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# 将视差图转换为三维点云
focal_length = 718.856
Q = np.float32([[1, 0, 0, -imgL.shape[1]/2],
[0, 1, 0, -imgL.shape[0]/2],
[0, 0, 0, focal_length],
[0, 0, 1, 0]])
points = cv2.reprojectImageTo3D(disparity, Q)
# 显示结果
cv2.imshow('imgMatch', imgMatch)
cv2.imshow('disparity', disp)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文