编写python代码利用pytorch平台实现数字图像识别任务。 1、获取数字图像数据集; 2、搭建深度卷积神经网络; 3、定义各种超参数,损失函数以及优化算法; 4、网络训练; 5、性能测试。
时间: 2023-12-15 12:06:51 浏览: 111
Python基于卷积神经网络识别RMB项目源码+数据集+模型,采用python中的PyTorch实现图像识别
好,下面是一个简单的 PyTorch 代码示例,用于实现数字图像识别任务,实现了上述 1-5 步骤:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 获取数字图像数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)
# 搭建深度卷积神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.fc1 = nn.Linear(64 * 11 * 11, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.relu(self.conv2(x))
x = x.view(-1, 64 * 11 * 11)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义各种超参数,损失函数以及优化算法
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 网络训练
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))
# 性能测试
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on the test dataset: %d %%' % (100 * correct / total))
```
以上代码中,我们使用了 MNIST 数据集,搭建了一个简单的卷积神经网络,并使用交叉熵损失函数和 Adam 优化算法进行训练,最后测试了网络的性能。你可以在这个代码的基础上进行修改和调整,以适应不同的数据集和任务。
阅读全文