基于opencv的双目立体视觉测距_摄像机标定

时间: 2023-05-09 12:02:27 浏览: 151
双目立体视觉测距是利用两个摄像机拍摄同一个目标,在图像处理中利用两幅图像的视差,从而计算出目标物体的距离。其中,摄像机标定是双目立体视觉测距的关键步骤之一。opencv提供了强大的双目立体视觉测距库,在使用之前,需要对摄像机进行标定。 摄像机标定主要是将摄像机的内参和外参计算出来。内参包括焦距、主点位置、畸变系数等参数,外参包括旋转矩阵和平移向量等参数。标定步骤包括摄像机的图像捕获,提取棋盘图格角点,求解内参和外参。opencv提供了一个内置的函数cv::calibrateCamera,可以方便地对摄像机进行标定。 摄像机标定完成后,即可进行双目立体视觉测距。在获取左右两幅图像后,需要进行图像预处理,包括去畸变、图像矫正等处理。接着,利用双目视差算法,可以计算出目标物体的距离。双目视差算法包括SAD、SSD、NCC等算法,opencv提供了多种双目视差算法函数可供选择。 综上所述,基于opencv的双目立体视觉测距需要进行摄像机标定,以获得摄像机的内参和外参,再进行图像预处理和双目视差算法计算,最终可以得到目标物体的距离。
相关问题

python opencv双目测距_OpenCV实现双目测距

双目测距是计算机视觉中一种常见的测距方法,通过两个摄像头或双目摄像头拍摄同一场景的两个不同视角的图像,计算两个视角之间的视差,从而得到场景中物体的距离。 在 Python 中,我们可以使用 OpenCV 库来实现双目测距。以下是一个简单的 OpenCV 双目测距代码示例: ```python import cv2 import numpy as np # 设置摄像头参数 cap_left = cv2.VideoCapture(1) cap_left.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap_left.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) cap_right = cv2.VideoCapture(2) cap_right.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap_right.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # 设置相机标定参数 K1 = np.array([[ 701.9780, 0, 324.4757], [ 0, 701.9780, 239.6201], [ 0, 0, 1.0000]]) K2 = np.array([[ 701.9780, 0, 303.5129], [ 0, 701.9780, 239.6201], [ 0, 0, 1.0000]]) D1 = np.array([[-0.0353, 0.0716, -0.0008, -0.0007, -0.0203]]) D2 = np.array([[-0.0375, 0.0716, -0.0019, -0.0009, -0.0213]]) R = np.array([[ 0.9993, -0.0056, -0.0373], [ 0.0058, 1.0000, 0.0044], [ 0.0373, -0.0046, 0.9993]]) T = np.array([[-76.7514], [ 0.5991], [ 0.0321]]) # 创建立体校正映射表 size = (640, 480) R1, R2, P1, P2, Q, _, _ = cv2.stereoRectify(K1, D1, K2, D2, size, R, T) map1x, map1y = cv2.initUndistortRectifyMap(K1, D1, R1, P1, size, cv2.CV_32FC1) map2x, map2y = cv2.initUndistortRectifyMap(K2, D2, R2, P2, size, cv2.CV_32FC1) while True: # 读取图像 ret1, img_left = cap_left.read() ret2, img_right = cap_right.read() if not ret1 or not ret2: break # 校正图像 img_left_remap = cv2.remap(img_left, map1x, map1y, cv2.INTER_LINEAR) img_right_remap = cv2.remap(img_right, map2x, map2y, cv2.INTER_LINEAR) # 计算视差图 stereo = cv2.StereoSGBM_create(minDisparity=0, numDisparities=16, blockSize=5, P1=8*3*5**2, P2=32*3*5**2, disp12MaxDiff=1, uniquenessRatio=10, speckleWindowSize=100, speckleRange=32) gray_left = cv2.cvtColor(img_left_remap, cv2.COLOR_BGR2GRAY) gray_right = cv2.cvtColor(img_right_remap, cv2.COLOR_BGR2GRAY) disp = stereo.compute(gray_left, gray_right).astype(np.float32) / 16.0 # 转换为深度图 f = 701.9780 # 焦距 b = 76.7514 # 双目基线 depth = f * b / disp # 显示深度图 depth_norm = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) cv2.imshow("depth", depth_norm) # 等待按键 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cap_left.release() cap_right.release() cv2.destroyAllWindows() ``` 在这个代码示例中,我们首先使用 `cv2.VideoCapture` 函数设置两个相机的参数,并读取左右两个相机的图像。然后,我们设置相机标定参数,通过 `cv2.stereoRectify` 函数生成立体校正映射表,使用 `cv2.remap` 函数对左右两个相机的图像进行校正。接着,我们使用 `cv2.StereoSGBM_create` 函数计算视差图,并将视差图转换为深度图。最后,我们使用 `cv2.imshow` 函数显示深度图,等待用户按下 'q' 键退出程序。 需要注意的是,本示例代码中的相机标定参数和立体校正参数都需要根据实际情况进行调整。同时,我们使用了 SGBM 算法进行视差计算,也可以使用其他算法,如 BM 算法或 Belief Propagation 算法。

opencv c++双目视觉测距

双目视觉测距是一种利用两个摄像头构建三维空间模型的技术。通过计算两个摄像头观察到同一个目标点的视差,就可以确定目标点在空间中的位置,从而实现测距。OpenCV是一个开源的计算机视觉库,其中也包括了实现双目视觉测距的函数。 OpenCV提供了一些函数来计算两个摄像头的相对位置和姿态,并根据相机特性调整左右摄像头的图像,以减少观察到的误差。其中,查找匹配点是实现测距的关键步骤。OpenCV中提供了多种匹配算法,包括基于块的匹配和SIFT配准等方法。 双目视觉测距在机器人导航、自动驾驶、机器人抓取等应用中有着广泛的应用。在实际应用中,还需要考虑实时性、准确性和稳定性等问题。因此,在使用OpenCV实现双目视觉测距时,还需要结合具体应用场景对算法进行优化和改进。

相关推荐

最新推荐

基于OpenCV人脸识别的分析与实现.doc

最后,通过上述理论学习,基于OpenCV,在Visual Studio 2012开发环境下,利用ORL人脸数据库,分别对上述算法进行了算法实现和实验验证,并且在最后创建了一个基于特征脸的实时人脸识别系统,该系统可以实现人脸的...

opencv摄像机双目标定代码

各标定步骤实现方法 1 计算标靶平面与图像平面之间...由单摄像机标定过程可以知道,标定靶每变换一个位置就可以得到一组摄像机外参数:Rr,Tr,与Rl, Tl,因此,由公式R=RrRl-1 ;T=Tr- RrRl-1Tl,可以得到一组结构参数R和T

基于Opencv实现双目摄像头拍照程序

主要为大家详细介绍了基于Opencv实现双目摄像头拍照程序,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

基于OpenCV的智能语音识别分拣机器人_池佳豪.pdf

物体智能识别技术是人工智能方面极为重要的研究内容,也是现代化智能搬运系统中的重要组成部分,对此本项目基于"语音识别、机器视觉以及无线传感器技术",提出了一种"基于OpenCV的智能语音识别分拣机器人"研究方案。...

Python使用OpenCV进行标定

主要介绍了Python使用OpenCV进行标定,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

ExcelVBA中的Range和Cells用法说明.pdf

ExcelVBA中的Range和Cells用法是非常重要的,Range对象可以用来表示Excel中的单元格、单元格区域、行、列或者多个区域的集合。它可以实现对单元格内容的赋值、取值、复制、粘贴等操作。而Cells对象则表示Excel中的单个单元格,通过指定行号和列号来操作相应的单元格。 在使用Range对象时,我们需要指定所操作的单元格或单元格区域的具体位置,可以通过指定工作表、行号、列号或者具体的单元格地址来实现。例如,可以通过Worksheets("Sheet1").Range("A5")来表示工作表Sheet1中的第五行第一列的单元格。然后可以通过对该单元格的Value属性进行赋值,实现给单元格赋值的操作。例如,可以通过Worksheets("Sheet1").Range("A5").Value = 22来讲22赋值给工作表Sheet1中的第五行第一列的单元格。 除了赋值操作,Range对象还可以实现其他操作,比如取值、复制、粘贴等。通过获取单元格的Value属性,可以取得该单元格的值。可以通过Range对象的Copy和Paste方法实现单元格内容的复制和粘贴。例如,可以通过Worksheets("Sheet1").Range("A5").Copy和Worksheets("Sheet1").Range("B5").Paste来实现将单元格A5的内容复制到单元格B5。 Range对象还有很多其他属性和方法可供使用,比如Merge方法可以合并单元格、Interior属性可以设置单元格的背景颜色和字体颜色等。通过灵活运用Range对象的各种属性和方法,可以实现丰富多样的操作,提高VBA代码的效率和灵活性。 在处理大量数据时,Range对象的应用尤为重要。通过遍历整个单元格区域来实现对数据的批量处理,可以极大地提高代码的运行效率。同时,Range对象还可以多次使用,可以在多个工作表之间进行数据的复制、粘贴等操作,提高了代码的复用性。 另外,Cells对象也是一个非常实用的对象,通过指定行号和列号来操作单元格,可以简化对单元格的定位过程。通过Cells对象,可以快速准确地定位到需要操作的单元格,实现对数据的快速处理。 总的来说,Range和Cells对象在ExcelVBA中的应用非常广泛,可以实现对Excel工作表中各种数据的处理和操作。通过灵活使用Range对象的各种属性和方法,可以实现对单元格内容的赋值、取值、复制、粘贴等操作,提高代码的效率和灵活性。同时,通过Cells对象的使用,可以快速定位到需要操作的单元格,简化代码的编写过程。因此,深入了解和熟练掌握Range和Cells对象的用法对于提高ExcelVBA编程水平是非常重要的。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

C++中的数据库连接与操作技术

# 1. 数据库连接基础 数据库连接是在各种软件开发项目中常见的操作,它是连接应用程序与数据库之间的桥梁,负责传递数据与指令。在C++中,数据库连接的实现有多种方式,针对不同的需求和数据库类型有不同的选择。在本章中,我们将深入探讨数据库连接的概念、重要性以及在C++中常用的数据库连接方式。同时,我们也会介绍配置数据库连接的环境要求,帮助读者更好地理解和应用数据库连接技术。 # 2. 数据库操作流程 数据库操作是C++程序中常见的任务之一,通过数据库操作可以实现对数据库的增删改查等操作。在本章中,我们将介绍数据库操作的基本流程、C++中执行SQL查询语句的方法以及常见的异常处理技巧。让我们

unity中如何使用代码实现随机生成三个不相同的整数

你可以使用以下代码在Unity中生成三个不同的随机整数: ```csharp using System.Collections.Generic; public class RandomNumbers : MonoBehaviour { public int minNumber = 1; public int maxNumber = 10; private List<int> generatedNumbers = new List<int>(); void Start() { GenerateRandomNumbers();

基于单片机的电梯控制模型设计.doc

基于单片机的电梯控制模型设计是一项旨在完成课程设计的重要教学环节。通过使用Proteus软件与Keil软件进行整合,构建单片机虚拟实验平台,学生可以在PC上自行搭建硬件电路,并完成电路分析、系统调试和输出显示的硬件设计部分。同时,在Keil软件中编写程序,进行编译和仿真,完成系统的软件设计部分。最终,在PC上展示系统的运行效果。通过这种设计方式,学生可以通过仿真系统节约开发时间和成本,同时具有灵活性和可扩展性。 这种基于单片机的电梯控制模型设计有利于促进课程和教学改革,更有利于学生人才的培养。从经济性、可移植性、可推广性的角度来看,建立这样的课程设计平台具有非常重要的意义。通过仿真系统,学生可以在实际操作之前完成系统设计和调试工作,提高了实验效率和准确性。最终,通过Proteus设计PCB,并完成真正硬件的调试。这种设计方案可以为学生提供实践操作的机会,帮助他们更好地理解电梯控制系统的原理和实践应用。 在设计方案介绍中,指出了在工业领域中,通常采用可编程控制器或微型计算机实现电梯逻辑控制,虽然可编程控制器有较强的抗干扰性,但价格昂贵且针对性强。而通过单片机控制中心,可以针对不同楼层分别进行合理调度,实现电梯控制的模拟。设计中使用按键用于用户发出服务请求,LED用于显示电梯状态。通过这种设计方案,学生可以了解电梯控制系统的基本原理和实现方法,培养他们的实践操作能力和创新思维。 总的来说,基于单片机的电梯控制模型设计是一项具有重要意义的课程设计项目。通过Proteus软件与Keil软件的整合,搭建单片机虚拟实验平台,可以帮助学生更好地理解电梯控制系统的原理和实践应用,培养他们的实践操作能力和创新思维。这种设计方案不仅有利于课程和教学改革,也对学生的人才培养具有积极的促进作用。通过这样的设计方案,学生可以在未来的工作中更好地应用所学知识,为电梯控制系统的研发和应用做出贡献。