param_distribs = { 'n_estimators': stats.randint(low=1, high=200), 'max_features': stats.randint(low=1, high=8), 'max_depth': stats.randint(low=1, high=20), 'min_samples_split': stats.randint(low=2, high=20), 'min_samples_leaf': stats.randint(low=1, high=20)}

时间: 2023-06-20 15:04:38 浏览: 231
这段代码是用于定义一个随机搜索的参数分布,用于在Scikit-learn的随机搜索算法中搜索最优的超参数。具体来说,参数分布包括: - n_estimators:随机森林中决策树的数量,取值范围为1到200之间的整数。 - max_features:每个决策树在进行分裂时考虑的特征数的最大值,取值范围为1到8之间的整数。 - max_depth:每个决策树的最大深度,取值范围为1到20之间的整数。 - min_samples_split:每个内部节点分裂所需的最小样本数,取值范围为2到20之间的整数。 - min_samples_leaf:每个叶子节点所需的最小样本数,取值范围为1到20之间的整数。 这些参数分布将被传递给Scikit-learn的随机搜索算法,该算法将在这些分布中进行随机采样,以探索不同的超参数组合。最终,算法将根据交叉验证性能选择最佳的超参数组合,以用于随机森林模型的训练。
相关问题

from scipy.stats import randint random_params = {'n_estimators': randint(low=80, high=200), 'max_features': randint(low=2, high=8)} forset_reg = RandomForestRegressor(random_state=2020) random_search_forest = RandomizedSearchCV(forest_reg, param_distributions=random_params, n_iter=20, scoring='neg_mean_squared_error', cv=5, random_state=2020) random_search_forest.fit(housing_prepares, housing_label) cvrus = random_search_forest.cv_results_ for mean_score, params in zip(cvrus['mean_test_score'], cvrus['params']): print(np.sqrt(-mean_score), params) print('随机搜索下最佳参数', random_search_forest.best_params_) print('随机搜索下最佳评估器', random_search_forest.best_estimator_) 将以上代码用plot绘图

同样,我无法直接绘制图表,但是你可以将不同超参数下的模型得分绘制成图表进行可视化展示。以下是一个示例代码: ```python import matplotlib.pyplot as plt import pandas as pd # 将 cv_results_ 转化为 DataFrame 格式 cvres_df = pd.DataFrame(random_search_forest.cv_results_) # 提取所需列 cvres_df = cvres_df[['param_n_estimators', 'param_max_features', 'mean_test_score']] # 将 param_n_estimators 和 param_max_features 转化为数值类型 cvres_df['param_n_estimators'] = cvres_df['param_n_estimators'].astype('int') cvres_df['param_max_features'] = cvres_df['param_max_features'].astype('int') # 绘制图表 fig, ax = plt.subplots(figsize=(12, 8)) for n_estimators in range(80, 201, 20): df = cvres_df[cvres_df['param_n_estimators'] == n_estimators] ax.plot(df['param_max_features'], np.sqrt(-df['mean_test_score']), label=f'n_estimators={n_estimators}') ax.set_xlabel('max_features') ax.set_ylabel('RMSE') ax.legend() plt.show() ``` 该代码将不同超参数下的模型得分绘制成了一张折线图,横坐标为 max_features,纵坐标为 RMSE。其中,每种颜色代表不同的 n_estimators 值。你可以根据实际情况进行修改和调整。

对这段代码进行注释def __init__(self,player): self.display_surface = pygame.display.get_surface() self.player = player self.attribute_nr = len(player.stats) self.attribute_names = list(player.stats.keys()) self.max_values = list(player.max_stats.values()) self.font = pygame.font.Font(UI_FONT, UI_FONT_SIZE) self.height = self.display_surface.get_size()[1] * 0.8 self.width = self.display_surface.get_size()[0] // 6 self.create_items() # selection system self.selection_index = 0 self.selection_time = None self.can_move = True

``` def __init__(self, player): """ 初始化函数,用于创建UI :param player: 玩家对象 """ # 获取显示表面 self.display_surface = pygame.display.get_surface() # 设置玩家对象 self.player = player # 玩家属性数量 self.attribute_nr = len(player.stats) # 玩家属性名称列表 self.attribute_names = list(player.stats.keys()) # 玩家属性最大值列表 self.max_values = list(player.max_stats.values()) # 字体初始化 self.font = pygame.font.Font(UI_FONT, UI_FONT_SIZE) # UI高度 self.height = self.display_surface.get_size()[1] * 0.8 # UI宽度 self.width = self.display_surface.get_size()[0] // 6 # 创建UI元素 self.create_items() # 选择系统 self.selection_index = 0 self.selection_time = None self.can_move = True ``` 这段代码是一个类的初始化函数,用于创建UI。在该函数中,首先获取了显示表面和玩家对象,并设置了一些属性,如玩家属性数量、名称列表、最大值列表。同时,还初始化了字体、UI高度和UI宽度。之后,创建了UI元素,并定义了选择系统的变量。其中,选择系统的变量包括选择索引、选择时间和移动标志。注释解释了该函数的参数和功能,以及各个变量的含义。
阅读全文

相关推荐

解释一下这段代码 def add_seq_to_prefix_tree(self, root_node, cluster: LogCluster): token_count = len(cluster.log_template_tokens) token_count_str = str(token_count) if token_count_str not in root_node.key_to_child_node: first_layer_node = Node() root_node.key_to_child_node[token_count_str] = first_layer_node else: first_layer_node = root_node.key_to_child_node[token_count_str] cur_node = first_layer_node if token_count == 0: cur_node.cluster_ids = [cluster.cluster_id] return current_depth = 1 for token in cluster.log_template_tokens: if current_depth >= self.max_node_depth or current_depth >= token_count: new_cluster_ids = [] for cluster_id in cur_node.cluster_ids: if cluster_id in self.id_to_cluster: new_cluster_ids.append(cluster_id) new_cluster_ids.append(cluster.cluster_id) cur_node.cluster_ids = new_cluster_ids break if token not in cur_node.key_to_child_node: if self.parametrize_numeric_tokens and self.has_numbers(token): if self.param_str not in cur_node.key_to_child_node: new_node = Node() cur_node.key_to_child_node[self.param_str] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: if self.param_str in cur_node.key_to_child_node: if len(cur_node.key_to_child_node) < self.max_children: new_node = Node() cur_node.key_to_child_node[token] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: if len(cur_node.key_to_child_node) + 1 < self.max_children: new_node = Node() cur_node.key_to_child_node[token] = new_node cur_node = new_node elif len(cur_node.key_to_child_node) + 1 == self.max_children: new_node = Node() cur_node.key_to_child_node[self.param_str] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: cur_node = cur_node.key_to_child_node[token] current_depth += 1

class _PointnetSAModuleBase(nn.Module): def init(self): super().init() self.npoint = None self.groupers = None self.mlps = None self.pool_method = 'max_pool' def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor): """ :param xyz: (B, N, 3) tensor of the xyz coordinates of the features :param features: (B, N, C) tensor of the descriptors of the the features :param new_xyz: :return: new_xyz: (B, npoint, 3) tensor of the new features' xyz new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ new_features_list = [] xyz_flipped = xyz.transpose(1, 2).contiguous() if new_xyz is None: new_xyz = pointnet2_utils.gather_operation( xyz_flipped, pointnet2_utils.furthest_point_sample(xyz, self.npoint) ).transpose(1, 2).contiguous() if self.npoint is not None else None for i in range(len(self.groupers)): new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample) new_features = self.mlpsi # (B, mlp[-1], npoint, nsample) if self.pool_method == 'max_pool': new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) elif self.pool_method == 'avg_pool': new_features = F.avg_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) else: raise NotImplementedError new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) new_features_list.append(new_features) return new_xyz, torch.cat(new_features_list, dim=1)你可以给我详细讲解一下这个模块吗,一个语句一个语句的来讲解

import pyntcloud from scipy.spatial import cKDTree import numpy as np def pass_through(cloud, limit_min=-10, limit_max=10, filter_value_name="z"): """ 直通滤波 :param cloud:输入点云 :param limit_min: 滤波条件的最小值 :param limit_max: 滤波条件的最大值 :param filter_value_name: 滤波字段(x or y or z) :return: 位于[limit_min,limit_max]范围的点云 """ points = np.asarray(cloud.points) if filter_value_name == "x": ind = np.where((points[:, 0] >= limit_min) & (points[:, 0] <= limit_max))[0] x_cloud = pcd.select_by_index(ind) return x_cloud elif filter_value_name == "y": ind = np.where((points[:, 1] >= limit_min) & (points[:, 1] <= limit_max))[0] y_cloud = cloud.select_by_index(ind) return y_cloud elif filter_value_name == "z": ind = np.where((points[:, 2] >= limit_min) & (points[:, 2] <= limit_max))[0] z_cloud = pcd.select_by_index(ind) return z_cloud # -------------------读取点云数据并可视化------------------------ # 读取原始点云数据 cloud_before=pyntcloud.PyntCloud.from_file("./data/pcd/000000.pcd") # 进行点云下采样/滤波操作 # 假设得到了处理后的点云(下采样或滤波后) pcd = o3d.io.read_point_cloud("./data/pcd/000000.pcd") filtered_cloud = pass_through(pcd, limit_min=-10, limit_max=10, filter_value_name="x") # 获得原始点云和处理后的点云的坐标值 points_before = cloud_before.points.values points_after = filtered_cloud.points.values # 使用KD-Tree将两组点云数据匹配对应,求解最近邻距离 kdtree_before = cKDTree(points_before) distances, _ = kdtree_before.query(points_after) # 计算平均距离误差 ade = np.mean(distances) print("滤波前后的点云平均距离误差为:", ade) o3d.visualization.draw_geometries([filtered_cloud], window_name="直通滤波", width=1024, height=768, left=50, top=50, mesh_show_back_face=False) # 创建一个窗口,设置窗口大小为800x600 vis = o3d.visualization.Visualizer() vis.create_window(width=800, height=600) # 设置视角点 ctr = vis.get_view_control() ctr.set_lookat([0, 0, 0]) ctr.set_up([0, 0, 1]) ctr.set_front([1, 0, 0])这段程序有什么问题吗

最新推荐

recommend-type

pytorch 状态字典:state_dict使用详解

param.requires_grad = False ``` 需要注意的是,不能直接对模型层对象如`model.conv1`设置`requires_grad`,因为`requires_grad`是Tensor的属性,而不是Layer的属性。因此,你需要遍历模型的参数列表进行操作。 ...
recommend-type

给你一个jingqsdfgnvsdljk

给你一个jingqsdfgnvsdljk
recommend-type

MPSK调制解调MATLAB仿真源代码

MPSK调制解调MATLAB仿真源代码,包括调制的实现、解调的实现、运行结果等
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建