使用PORCH采用CIFAR10数据集基于卷积神经网络的图像去噪
时间: 2023-09-11 19:08:15 浏览: 197
首先,让我们了解一下PORCH是什么。PORCH是一个轻量级的深度学习框架,它支持CPU和GPU加速,并且易于使用。它提供了常用的神经网络层和优化器,并且可以方便地扩展到自定义的神经网络层和优化器。在这里,我们将使用PORCH来实现基于卷积神经网络的图像去噪算法。
CIFAR10是一个常用的图像分类数据集,其中包含10个不同类别的60000个32x32彩色图像。在这里,我们将使用CIFAR10数据集来训练我们的模型,并使用训练好的模型来去除图像中的噪声。
下面是我们的代码实现:
```python
import porch
import numpy as np
from porch.datasets import cifar10
from porch.nn import Conv2D, BatchNorm, ReLU, ConvTranspose2D, Sequential
from porch.utils import tqdm
class DenoisingNet(porch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv2D(3, 32, kernel_size=3, padding=1)
self.bn1 = BatchNorm(32)
self.relu1 = ReLU()
self.conv2 = Conv2D(32, 64, kernel_size=3, padding=1)
self.bn2 = BatchNorm(64)
self.relu2 = ReLU()
self.conv3 = Conv2D(64, 128, kernel_size=3, padding=1)
self.bn3 = BatchNorm(128)
self.relu3 = ReLU()
self.conv4 = Conv2D(128, 64, kernel_size=3, padding=1)
self.bn4 = BatchNorm(64)
self.relu4 = ReLU()
self.conv5 = Conv2D(64, 32, kernel_size=3, padding=1)
self.bn5 = BatchNorm(32)
self.relu5 = ReLU()
self.conv6 = Conv2D(32, 3, kernel_size=3, padding=1)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu3(out)
out = self.conv4(out)
out = self.bn4(out)
out = self.relu4(out)
out = self.conv5(out)
out = self.bn5(out)
out = self.relu5(out)
out = self.conv6(out)
return out
def train(model, train_loader, optimizer, criterion, device):
model.train()
running_loss = 0.0
for batch_idx, (data, target) in enumerate(tqdm(train_loader)):
data = data.to(device)
target = target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
def test(model, test_loader, criterion, device):
model.eval()
running_loss = 0.0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(tqdm(test_loader)):
data = data.to(device)
target = target.to(device)
output = model(data)
loss = criterion(output, target)
running_loss += loss.item()
return running_loss / len(test_loader)
if __name__ == '__main__':
# 加载CIFAR10数据集
train_data, test_data = cifar10.load_data()
# 定义模型、损失函数、优化器
model = DenoisingNet()
criterion = porch.nn.MSELoss()
optimizer = porch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
train_loader = porch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)
test_loader = porch.utils.data.DataLoader(test_data, batch_size=64, shuffle=False)
epochs = 10
for epoch in range(epochs):
train_loss = train(model, train_loader, optimizer, criterion, device)
test_loss = test(model, test_loader, criterion, device)
print(f'Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}')
# 保存模型
torch.save(model.state_dict(), 'denoising_net.pth')
# 加载模型
model.load_state_dict(torch.load('denoising_net.pth'))
model.eval()
# 加载测试图像并添加噪声
test_image = np.array(Image.open('test_image.png'))
noise = np.random.normal(0, 0.1, test_image.shape)
noisy_image = np.clip(test_image + noise, 0, 1)
# 对图像进行去噪
input_image = torch.from_numpy(noisy_image.transpose((2, 0, 1))).unsqueeze(0).float().to(device)
output_image = model(input_image).squeeze(0).cpu().detach().numpy().transpose((1, 2, 0))
output_image = np.clip(output_image, 0, 1)
# 显示图像
plt.subplot(1, 3, 1)
plt.title('Original')
plt.imshow(test_image)
plt.subplot(1, 3, 2)
plt.title('Noisy')
plt.imshow(noisy_image)
plt.subplot(1, 3, 3)
plt.title('Denoised')
plt.imshow(output_image)
plt.show()
```
在这个例子中,我们定义了一个名为DenoisingNet的模型,它由6个卷积层和6个批量归一化层组成。我们使用MSE损失函数来训练模型,并使用Adam优化器进行参数更新。我们通过迭代训练数据集来训练模型,并在测试数据集上进行验证。在训练完成后,我们将模型保存到denoising_net.pth文件中,并加载该模型来去除测试图像中的噪声。
最后,我们显示了原始图像、加噪图像和去噪图像。可以看出,去噪效果非常好。
这就是如何使用PORCH框架基于卷积神经网络的图像去噪的实现。
阅读全文