GRU神经网络matlab程序
时间: 2023-09-30 20:08:33 浏览: 193
以下是一个简单的GRU神经网络的MATLAB实现示例:
```matlab
% GRU神经网络实现
% 参考:https://github.com/crazydonkey200/neural-networks-for-nlp/blob/master/gru.m
classdef GRUNetwork < handle
properties
input_dim
hidden_dim
output_dim
Wz
Wr
Wh
Uz
Ur
Uh
bz
br
bh
end
methods
function obj = GRUNetwork(input_dim, hidden_dim, output_dim)
obj.input_dim = input_dim;
obj.hidden_dim = hidden_dim;
obj.output_dim = output_dim;
obj.Wz = rand(hidden_dim, input_dim);
obj.Wr = rand(hidden_dim, input_dim);
obj.Wh = rand(hidden_dim, input_dim);
obj.Uz = rand(hidden_dim, hidden_dim);
obj.Ur = rand(hidden_dim, hidden_dim);
obj.Uh = rand(hidden_dim, hidden_dim);
obj.bz = zeros(hidden_dim, 1);
obj.br = zeros(hidden_dim, 1);
obj.bh = zeros(hidden_dim, 1);
end
function [h, y] = forward(obj, x)
T = size(x, 2);
h = zeros(obj.hidden_dim, T);
z = zeros(obj.hidden_dim, T);
r = zeros(obj.hidden_dim, T);
y = zeros(obj.output_dim, T);
h(:, 1) = zeros(obj.hidden_dim, 1);
for t = 1:T
z(:, t) = sigmoid(obj.Wz * x(:, t) + obj.Uz * h(:, t) + obj.bz);
r(:, t) = sigmoid(obj.Wr * x(:, t) + obj.Ur * h(:, t) + obj.br);
h_tilde = tanh(obj.Wh * x(:, t) + obj.Uh * (r(:, t) .* h(:, t)) + obj.bh);
h(:, t + 1) = (1 - z(:, t)) .* h(:, t) + z(:, t) .* h_tilde;
y(:, t) = softmax(h(:, t + 1));
end
h = h(:, 2:end);
end
function [dWz, dWr, dWh, dUz, dUr, dUh, dbz, dbr, dbh] = backward(obj, x, y_true, y_pred, h)
T = size(x, 2);
dWz = zeros(size(obj.Wz));
dWr = zeros(size(obj.Wr));
dWh = zeros(size(obj.Wh));
dUz = zeros(size(obj.Uz));
dUr = zeros(size(obj.Ur));
dUh = zeros(size(obj.Uh));
dbz = zeros(size(obj.bz));
dbr = zeros(size(obj.br));
dbh = zeros(size(obj.bh));
dz = zeros(obj.hidden_dim, T);
dr = zeros(obj.hidden_dim, T);
dh_tilde = zeros(obj.hidden_dim, T);
dh = zeros(obj.hidden_dim, T + 1);
dy = y_pred - y_true;
dh(:, end) = zeros(obj.hidden_dim, 1);
for t = T:-1:1
dh(:, t) = (1 - z(:, t)) .* dh(:, t + 1);
dh_tilde(:, t) = z(:, t) .* dy(:, t) .* (1 - tanh(obj.Wh * x(:, t) + obj.Uh * (r(:, t) .* h(:, t)) + obj.bh) .^ 2);
dz(:, t) = (h_tilde(:, t) - h(:, t)) .* h(:, t + 1) .* z(:, t) .* (1 - z(:, t));
dr(:, t) = sum(obj.Uh' * dh_tilde(:, t) .* h(:, t + 1) .* z(:, t) .* (1 - r(:, t)), 2);
dh(:, t) = dh(:, t) + obj.Uh' * dh_tilde(:, t) .* r(:, t) .* (1 - h(:, t + 1) .^ 2);
dbz = dbz + dz(:, t);
dbr = dbr + dr(:, t);
dbh = dbh + sum(dh_tilde(:, t), 2);
dWz = dWz + dz(:, t) * x(:, t)';
dWr = dWr + dr(:, t) * x(:, t)';
dWh = dWh + dh_tilde(:, t) * (r(:, t) .* h(:, t))';
dUz = dUz + dz(:, t) * h(:, t)';
dUr = dUr + dr(:, t) * h(:, t)';
dUh = dUh + dh_tilde(:, t) * (r(:, t) .* h(:, t - 1))';
end
end
function update(obj, dWz, dWr, dWh, dUz, dUr, dUh, dbz, dbr, dbh, lr)
obj.Wz = obj.Wz - lr * dWz;
obj.Wr = obj.Wr - lr * dWr;
obj.Wh = obj.Wh - lr * dWh;
obj.Uz = obj.Uz - lr * dUz;
obj.Ur = obj.Ur - lr * dUr;
obj.Uh = obj.Uh - lr * dUh;
obj.bz = obj.bz - lr * dbz;
obj.br = obj.br - lr * dbr;
obj.bh = obj.bh - lr * dbh;
end
end
end
function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end
function sm = softmax(x)
ex = exp(x);
sm = ex / sum(ex);
end
```
这个实现包括前向和后向传播以及模型参数的更新。你可以使用`GRUNetwork`类来实例化GRU网络并进行训练和测试。
阅读全文