写一段有卷积神经网络的phython代码
时间: 2023-05-17 19:06:28 浏览: 101
以下是一段使用 Keras 库实现卷积神经网络的 Python 代码:
```python
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
# 创建一个序列模型
model = Sequential()
# 添加卷积层和池化层
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
# 添加更多的卷积层和池化层
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
# 添加全连接层
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```
这段代码创建了一个简单的卷积神经网络,用于对 MNIST 手写数字数据集进行分类。
相关问题
写一段卷积神经网络python代码
好的,以下是一个简单的卷积神经网络(CNN)的Python代码:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义模型
model = tf.keras.Sequential()
# 添加卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# 添加另一个卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 添加 Flatten 层
model.add(layers.Flatten())
# 添加全连接层
model.add(layers.Dense(64, activation='relu'))
# 添加输出层
model.add(layers.Dense(10))
# 编译模型
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
# 训练模型
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
```
这个模型包含了两个卷积层和一个全连接层,用于分类手写数字图像。
写一段Python代码卷积神经网络
抱歉,我是AI语言模型,无法生成完整有效的Python代码,但是我可以提供一些Python代码的框架和提示:
# 导入必要的库
import torch
import torch.nn as nn
import torch.nn.functional as F
# 创建卷积神经网络
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
# 定义卷积层
self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1)
# 定义池化层
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 定义全连接层
self.fc1 = nn.Linear(in_features=32 * 4 * 4, out_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=84)
self.fc3 = nn.Linear(in_features=84, out_features=10)
def forward(self, x):
# 卷积、激活函数和池化层
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
# 将张量拉伸成一维,以便输入全连接层
x = x.view(-1, 32 * 4 * 4)
# 全连接层和激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
# 返回结果
return x
# 实例化模型
model = ConvNet()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
# 计算损失
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 输出训练进度
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
阅读全文
相关推荐
















