题目描述 给定一个长度为n(1<=n<=200)的数列,将这个数列按如下规则排列。 最小数,最大数,次小数,次大数,...... 输入 第一行为一个整数n。 第二行包含n个整数,为待排序的数,每个整数的绝对值小于10000。 输出 输出一行,按从题目要求的顺序输出排序后的数列。

时间: 2024-02-13 12:07:05 浏览: 192
以下是一个 Python 实现的示例代码,可以实现按照题目要求的顺序对给定数列进行排序: ```python n = int(input()) a = list(map(int, input().split())) a.sort() # 将数列从小到大排序 res = [] # 用于存放排序结果 i, j = 0, n-1 # 初始时,最小数和最大数分别在数列两端 while i <= j: if i == j: # 如果只有一个数剩余,直接添加到结果列表中 res.append(a[i]) break res.append(a[i]) # 添加当前区间的最小数 res.append(a[j]) # 添加当前区间的最大数 i += 1 j -= 1 print(*res) # 将排序结果输出,中间用空格隔开 ``` 你可以将这段代码复制到本地 Python 环境中运行,然后输入样例数据 `5` 和 `1 2 3 4 5`,就可以得到按照题目要求进行排序后的结果 `1 5 2 4 3`。
相关问题

 给定一个长度为n的数列,将这个数列按从小到大的顺序排列。1<=n<=200

给定一个长度为n的数列,将这个数列按从小到大的顺序排列的常见方法是使用排序算法。常见的排序算法有冒泡排序、插入排序、选择排序、快速排序、归并排序等。 其中,冒泡排序是一种简单但效率较低的排序算法,它通过多次遍历数列,每次比较相邻的两个元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到数列的末尾。冒泡排序的时间复杂度为O(n^2)。 插入排序是一种稳定的排序算法,它通过将数列分为已排序和未排序两部分,每次从未排序部分取出一个元素插入到已排序部分的正确位置。插入排序的时间复杂度为O(n^2)。 选择排序是一种简单但效率较低的排序算法,它通过多次遍历数列,每次选择未排序部分的最小(或最大)元素,并将其放置在已排序部分的末尾。选择排序的时间复杂度为O(n^2)。 快速排序是一种高效的排序算法,它通过选择一个基准元素,将数列分为小于基准元素和大于基准元素的两部分,然后对这两部分分别进行快速排序。快速排序的时间复杂度为O(nlogn)。 归并排序是一种稳定的排序算法,它通过将数列递归地分成两半,分别进行排序,然后将两个有序的子数列合并成一个有序的数列。归并排序的时间复杂度为O(nlogn)。 以上是一些常见的排序算法,你可以根据具体情况选择合适的算法来对长度为n的数列进行排序。

给定一个长度为n的数列,将这个数列按从小到大的顺序排列。py1<=n<=200

可以使用冒泡排序算法来对给定的数列按照从小到大的顺序进行排序。冒泡排序是一种简单的排序算法,其基本思想是通过多次遍历数列,每次比较相邻的两个数,如果前一个数大于后一个数,则交换它们的位置,直到整个数列都排好序为止。 具体实现冒泡排序的步骤如下: 1. 遍历数列,比较相邻的两个数,如果前一个数大于后一个数,则交换它们的位置。 2. 继续遍历剩下的元素,重复上述比较交换的过程,直到最后一个元素,此时最大的数已经被排在了最后。 3. 重复上述的遍历比较交换的过程n-1次,直到整个数列排序完成。 例如,对于数列[5, 3, 8, 2, 1],使用冒泡排序算法排序的过程如下: 第一遍遍历:[3, 5, 2, 1, 8] 第二遍遍历:[3, 2, 1, 5, 8] 第三遍遍历:[2, 1, 3, 5, 8] 第四遍遍历:[1, 2, 3, 5, 8] 通过上述过程,数列成功地按从小到大的顺序进行了排序。 根据算法的复杂度分析,冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。因此,对于长度为n的数列进行冒泡排序是一个相对简单但不是非常高效的方法。 在实际编程中,可以使用Python编程语言来实现冒泡排序算法,将数列作为输入,通过编写相应的逻辑实现冒泡排序的过程。

相关推荐

最新推荐

recommend-type

履带式拖拉机Creo2.0_三维3D设计图纸.zip

履带式拖拉机Creo2.0_三维3D设计图纸.zip
recommend-type

SSM+JSP高校毕业生就业满意度调查统计系统答辩PPT.pptx

计算机毕业设计答辩PPT
recommend-type

SSM+JSP冰淇淋在线购买网站答辩PPT.ppt

计算机毕业设计答辩PPT
recommend-type

SSM+JSP医护系统答辩PPT.pptx

计算机毕业设计答辩PPT
recommend-type

C语言快速排序算法的实现与应用

资源摘要信息: "C语言实现quickSort.rar" 知识点概述: 本文档提供了一个使用C语言编写的快速排序算法(quickSort)的实现。快速排序是一种高效的排序算法,它使用分治法策略来对一个序列进行排序。该算法由C. A. R. Hoare在1960年提出,其基本思想是:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 知识点详解: 1. 快速排序算法原理: 快速排序的基本操作是通过一个划分(partition)操作将数据分为独立的两部分,其中一部分的所有数据都比另一部分的所有数据要小,然后再递归地对这两部分数据分别进行快速排序,以达到整个序列有序。 2. 快速排序的步骤: - 选择基准值(pivot):从数列中选取一个元素作为基准值。 - 划分操作:重新排列数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆放在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。 - 递归排序子序列:递归地将小于基准值元素的子序列和大于基准值元素的子序列排序。 3. 快速排序的C语言实现: - 定义一个函数用于交换元素。 - 定义一个主函数quickSort,用于开始排序。 - 实现划分函数partition,该函数负责找到基准值的正确位置并返回这个位置的索引。 - 在quickSort函数中,使用递归调用对子数组进行排序。 4. C语言中的函数指针和递归: - 在快速排序的实现中,可以使用函数指针来传递划分函数,以适应不同的划分策略。 - 递归是实现快速排序的关键技术,理解递归的调用机制和返回值对理解快速排序的过程非常重要。 5. 快速排序的性能分析: - 平均时间复杂度为O(nlogn),最坏情况下时间复杂度为O(n^2)。 - 快速排序的空间复杂度为O(logn),因为它是一个递归过程,需要一个栈来存储递归的调用信息。 6. 快速排序的优点和缺点: - 优点:快速排序在大多数情况下都能达到比其他排序算法更好的性能,尤其是在数据量较大时。 - 缺点:在最坏情况下,快速排序会退化到冒泡排序的效率,即O(n^2)。 7. 快速排序与其他排序算法的比较: - 快速排序与冒泡排序、插入排序、归并排序、堆排序等算法相比,在随机数据下的平均性能往往更优。 - 快速排序不适合链表这种非顺序存储的数据结构,因为其随机访问的特性是排序效率的关键。 8. 快速排序的实际应用: - 快速排序因其高效率被广泛应用于各种数据处理场景,例如数据库管理系统、文件系统等。 - 在C语言中,快速排序可以用于对结构体数组、链表等复杂数据结构进行排序。 总结: 通过对“C语言实现quickSort.rar”文件的内容学习,我们可以深入理解快速排序算法的设计原理和C语言实现方式。这不仅有助于提高编程技能,还能让我们在遇到需要高效排序的问题时,能够更加从容不迫地选择和应用快速排序算法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ElementTree性能优化指南:如何将XML处理速度提升至极限

![ElementTree](https://blog.finxter.com/wp-content/uploads/2022/12/image-124.png) # 1. ElementTree的基本介绍与应用 ## 1.1 ElementTree简介 ElementTree是Python标准库中的XML处理模块,提供了一套完整的工具来创建、修改、解析XML数据。相比其他XML库,ElementTree具有轻量级和易用性的特点,使其成为处理XML数据的首选库。 ## 1.2 ElementTree的应用场景 ElementTree广泛应用于数据交换、配置文件处理、网页内容抓取等场景。例如
recommend-type

包含了简单的drop源和drop目标程序的完整代码,为了可以简单的访问这些文件,你仅仅需要输入下面的命令:

包含简单drop操作的源和目标程序通常涉及到数据传输、清理或者是文件管理。这里提供一个简化的Python示例,使用`shutil`库来进行文件删除操作: ```python import shutil # 定义源文件路径 source_file = "path/to/source/file.txt" # 定义目标目录(如果不存在则创建) target_directory = "path/to/target/directory" if not os.path.exists(target_directory): os.makedirs(target_directory) # 简单的
recommend-type

KityFormula 编辑器压缩包功能解析

资源摘要信息:"kityformula-editor.zip是一个压缩文件,其中包含了kityformula-editor的相关文件。kityformula-editor是百度团队开发的一款网页版数学公式编辑器,其功能类似于LaTeX编辑器,可以在网页上快速编辑和渲染数学公式。kityformula-editor的主要特点是轻量级,能够高效地加载和运行,不需要依赖任何复杂的库或框架。此外,它还支持多种输入方式,如鼠标点击、键盘快捷键等,用户可以根据自己的习惯选择输入方式。kityformula-editor的编辑器界面简洁明了,易于使用,即使是第一次接触的用户也能迅速上手。它还提供了丰富的功能,如公式高亮、自动补全、历史记录等,大大提高了公式的编辑效率。此外,kityformula-editor还支持导出公式为图片或SVG格式,方便用户在各种场合使用。总的来说,kityformula-editor是一款功能强大、操作简便的数学公式编辑工具,非常适合需要在网页上展示数学公式的场景。" 知识点: 1. kityformula-editor是什么:kityformula-editor是由百度团队开发的一款网页版数学公式编辑器,它的功能类似于LaTeX编辑器,可以在网页上快速编辑和渲染数学公式。 2. kityformula-editor的特点:kityformula-editor的主要特点是轻量级,它能够高效地加载和运行,不需要依赖任何复杂的库或框架。此外,它还支持多种输入方式,如鼠标点击、键盘快捷键等,用户可以根据自己的习惯选择输入方式。kityformula-editor的编辑器界面简洁明了,易于使用,即使是第一次接触的用户也能迅速上手。 3. kityformula-editor的功能:kityformula-editor提供了丰富的功能,如公式高亮、自动补全、历史记录等,大大提高了公式的编辑效率。此外,它还支持导出公式为图片或SVG格式,方便用户在各种场合使用。 4. kityformula-editor的使用场景:由于kityformula-editor是基于网页的,因此它非常适合需要在网页上展示数学公式的场景,例如在线教育、科研报告、技术博客等。 5. kityformula-editor的优势:相比于传统的LaTeX编辑器,kityformula-editor的优势在于它的轻量级和易用性。它不需要用户有深厚的LaTeX知识,也无需安装复杂的编辑环境,只需要一个浏览器就可以进行公式的编辑和展示。 6. kityformula-editor的发展前景:随着在线教育和科研的普及,对于一款轻量级且功能强大的数学公式编辑器的需求将会越来越大。因此,kityformula-editor有着广阔的市场前景和发展空间。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依