解释一下422/422 [==============================] - 4s 8ms/step - loss: 0.0238 - accuracy: 0.9928 - val_loss: 0.0464 - val_accuracy: 0.9870
时间: 2023-08-10 09:06:11 浏览: 151
这是一个神经网络的训练结果的输出。422表示训练集的大小,422表示验证集的大小。方括号中的内容表示进度条,等号表示已经完成的比例。4s表示训练的时间。8ms/step表示每个步骤的耗时。loss表示训练集的损失,accuracy表示训练集的准确率。val_loss表示验证集的损失,val_accuracy表示验证集的准确率。在这个例子中,训练集的损失为0.0238,准确率为0.9928,验证集的损失为0.0464,准确率为0.9870。这意味着模型在训练集和验证集上表现良好,并且具有较高的精度和较低的损失。
相关问题
解释以下代码 void TIM2_IRQHandler(void) //TIM2ÖÐ¶Ï { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) //¼ì²éÖ¸¶¨µÄTIMÖжϷ¢ÉúÓë·ñ:TIM ÖжÏÔ´ { if ((++HALF_SECOND_TIME) > 50) //500ms { HALF_SECOND_TIME = 0; UDP_SEND_TIME_FLAG = 1; } if ((++PULSE_COUNT) > 100) //1000ms { PULSE_COUNT = 0; ONE_SECOND_REACH_FLAG = 1; EVERY_SECOUND_FLAG = 1; } ++time_times; //10ms if (++frame_check_time > 10) //>100ms { Uart5_Rx_Num = 0; Uart5_Sta = 0; } if ((--commu_netip_time) == 0) //>20ms { Uart4_sta = 1; Uart4_Rx_Num = 0; } if ((--uart422_frame_check) == 0) { Uart422_Rx_Num = 0; Uart422_Sta = 2; } if ((--key_delay_time) == 0) { key_delay_flag = 0; } if (++time_200ms > 20) //200ms { Time_Count++; time_200ms = 0; } }
这段代码是关于 TIM2 中断处理函数的实现。当 TIM2 产生更新中断并且该中断被使能时,会执行以下操作:
1. 检查 HALF_SECOND_TIME 是否超过 50,如果是,则将 HALF_SECOND_TIME 设置为 0,同时设置 UDP_SEND_TIME_FLAG 标志为 1。
2. 检查 PULSE_COUNT 是否超过 100,如果是,则将 PULSE_COUNT 设置为 0,并设置 ONE_SECOND_REACH_FLAG 和 EVERY_SECOND_FLAG 标志为 1。
3. 检查 frame_check_time 是否超过 10ms,如果是,则清空 Uart5_Rx_Num 和 Uart5_Sta。
4. 检查 commu_netip_time 是否减到 0,如果是,则将 Uart4_sta 设置为 1,同时清空 Uart4_Rx_Num。
5. 检查 uart422_frame_check 是否减到 0,如果是,则清空 Uart422_Rx_Num 并将 Uart422_Sta 设置为 2。
6. 检查 key_delay_time 是否减到 0,如果是,则将 key_delay_flag 设置为 0。
7. 检查 time_200ms 是否超过 20,如果是,则 Time_Count 增加 1,同时将 time_200ms 设置为 0。
总的来说,这段代码是在处理一些定时任务,通过定时检测一些标志位来触发相应的动作,如执行串口数据清空、开启或关闭某些功能等。
解释代码extern u16 ONE_SECOND_REACH_FLAG; extern u32 time_times; extern u32 alarm_delay_time; extern u16 alarm_delay_flag; extern uint32_t INPUT_DATA; u16 FARAWAY_SWTICH_FLAG = 0; u16 LOCAL_SWTICH_FLAG = 0; extern u16 CONTROL_COIL_DATA; u16 local_control_flag = 0; u16 far_control_flag = 0; extern u16 SET_PWM_DATA[4]; int main(void) { SystemInit(); NVIC_Configuration(); FLASH_Unlock(); RELAY_OUTPUT_IO_Init(); Adc_Init(); WWDG_NVIC_Init(); Timer2_Init(); CAN_Config(); SWITCH_INPUT_GPIO_Config(); USART5_Initialise(38400); NETIP_to_mcu_Initialise(9600); USART422_Initialise(9600); USART232_Initialise(9600); //初始化 RTU模式 从机地址为1 UART2 9600 无校验 eMBInit(MB_RTU, 0x01, 0x01, 9600, MB_PAR_NONE); //启动FreeModbus eMBEnable(); while (1) { // INPUT_DATA = 0x00000004; Calcu_FP_TEMP(); eMBPoll(); //modbus if (ONE_SECOND_REACH_FLAG) //1s { ONE_SECOND_REACH_FLAG = 0; // get422_ready_data(); //422 // netip_get_work_state_data(); //网口 // get232_ready_register(); //232 getusart5_ready_data(); } // SET_PWM_DATA[0] = 50; // SET_PWM_DATA[1] = 50; // SET_PWM_DATA[2] = 50; // SET_PWM_DATA[3] = 50; // scheduled_can_transmission();//can scan_input_state(); // communication485_protocol_solution();//485 //通信收发机 协议 方案 communicationusart5_protocol_solution(); //103 // getusart5_ready_data(); //获取485准备指示 get485_ready_register(); // communication422_protocol_solution(); // netip_communication_protocol_solution(); // communication_uart3_protocol_solution(); //232 //测试板 test_board_prog(); //控制 线圈 CONTROL_COIL(); } }
该代码主要是一个嵌入式系统的主函数,其中包含了一些变量的声明和初始化以及各种外设的初始化。
其中,extern关键字表示该变量在其他文件中已经定义过,现在只需要声明一下就可以在本文件中使用了。
在while(1)循环中,对各种外设进行轮询和处理,如modbus通信、UART通信、CAN总线通信、485通信等等。
同时,在每个1秒钟的时间间隔内,获取各个通信模块的数据,并进行一些控制操作,如控制输出、控制线圈等等。
总之,该代码的目的是让嵌入式系统能够高效地运行各种外设和通信模块,并实现控制和控制策略。
阅读全文