写一个python Flask销售预测系统,系统有一个suanfa.py文件,该文件的作用:先读取shuju.csv(共有24条数据,包含Year、Month和TotalPrice三个属性),然后用scaler将TotalPrice进行归一化处理,之后定义一个函数def split_data(data, lookback):将数据集划分为测试集(0.2)和训练集(0.8),data_raw = data.to_numpy(),lookback = 4,然后再将划分完成后的测试集和训练集转换为PyTorch张量,然后定义超参数,定义算法模型model=LSTM()、损失函数和优化器(Adam)然后训练模型求出MSE,保存模型。有一个predict.html文件:里面有一个日期选择框和一个销售额预测按钮,用户选择好年份和月份后点击预测按钮系统就开始调用保存好的模型来对所选月份的销售额进行预测,然后将预测结果返回到日期选择框下面的结果返回框中;有一个app.py文件:定义路径。用flask和bootstrap、LayUI写出完整详细代码

时间: 2023-06-27 14:06:55 浏览: 239
这是一个比较完整的 Flask 销售预测系统,包含了前端页面和后端算法模型。使用了 Bootstrap 和 LayUI 两个前端框架,用 PyTorch 框架实现了 LSTM 模型进行销售预测。 suanfa.py 文件: ```python import torch import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler def split_data(data, lookback): data_raw = data.to_numpy() data = [] # create all possible sequences of length lookback for index in range(len(data_raw) - lookback): data.append(data_raw[index: index + lookback]) data = np.array(data) test_set_size = int(np.round(0.2*data.shape[0])) train_set_size = data.shape[0] - (test_set_size) x_train = torch.from_numpy(np.array(data[:train_set_size,:-1,:])) y_train = torch.from_numpy(np.array(data[:train_set_size,-1,:])) x_test = torch.from_numpy(np.array(data[train_set_size:,:-1,:])) y_test = torch.from_numpy(np.array(data[train_set_size:,-1,:])) return x_train.float(), y_train.float(), x_test.float(), y_test.float() class LSTM(torch.nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, output_dim): super(LSTM, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.lstm = torch.nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.fc = torch.nn.Linear(hidden_dim, output_dim) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_() out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach())) out = self.fc(out[:, -1, :]) return out if __name__ == '__main__': data = pd.read_csv('shuju.csv') scaler = MinMaxScaler(feature_range=(-1, 1)) data['TotalPrice'] = scaler.fit_transform(data['TotalPrice'].values.reshape(-1,1)) x_train, y_train, x_test, y_test = split_data(data[['Year','Month','TotalPrice']], 4) input_dim = 3 hidden_dim = 12 num_layers = 1 output_dim = 1 num_epochs = 1000 model = LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers) loss_fn = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for t in range(num_epochs): y_pred = model(x_train) loss = loss_fn(y_pred, y_train) if t % 100 == 0: print("Epoch ", t, "MSE: ", loss.item()) optimizer.zero_grad() loss.backward() optimizer.step() torch.save(model.state_dict(), 'model_lstm.pth') ``` predict.html 文件: ```html <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>销售预测系统</title> <link rel="stylesheet" href="https://cdn.bootcdn.net/ajax/libs/layui/2.5.7/css/layui.min.css"> <link rel="stylesheet" href="https://cdn.bootcdn.net/ajax/libs/twitter-bootstrap/4.5.3/css/bootstrap.min.css"> <script src="https://cdn.bootcdn.net/ajax/libs/jquery/3.5.1/jquery.min.js"></script> <script src="https://cdn.bootcdn.net/ajax/libs/layui/2.5.7/layui.min.js"></script> <script src="https://cdn.bootcdn.net/ajax/libs/twitter-bootstrap/4.5.3/js/bootstrap.min.js"></script> </head> <body> <div class="container"> <div class="row justify-content-center mt-5"> <div class="col-md-6"> <div class="form-group"> <label for="year">年份:</label> <select class="form-control" id="year"> <option value="2014">2014</option> <option value="2015">2015</option> <option value="2016">2016</option> <option value="2017">2017</option> <option value="2018">2018</option> <option value="2019">2019</option> <option value="2020">2020</option> </select> </div> <div class="form-group"> <label for="month">月份:</label> <select class="form-control" id="month"> <option value="1">1</option> <option value="2">2</option> <option value="3">3</option> <option value="4">4</option> <option value="5">5</option> <option value="6">6</option> <option value="7">7</option> <option value="8">8</option> <option value="9">9</option> <option value="10">10</option> <option value="11">11</option> <option value="12">12</option> </select> </div> <div class="form-group"> <button class="btn btn-primary" onclick="predict()">销售额预测</button> </div> <div class="form-group"> <label for="result">预测结果:</label> <input type="text" class="form-control" id="result" disabled> </div> </div> </div> </div> <script> function predict() { var year = $('#year').val(); var month = $('#month').val(); $.ajax({ url: '/predict', method: 'POST', data: { 'year': year, 'month': month }, success: function(response) { $('#result').val(response); } }); } </script> </body> </html> ``` app.py 文件: ```python from flask import Flask, render_template, request, jsonify import suanfa import torch import pandas as pd from sklearn.preprocessing import MinMaxScaler app = Flask(__name__) @app.route('/') def index(): return render_template('predict.html') @app.route('/predict', methods=['POST']) def predict(): year = int(request.form['year']) month = int(request.form['month']) data = pd.read_csv('shuju.csv') scaler = MinMaxScaler(feature_range=(-1, 1)) data['TotalPrice'] = scaler.fit_transform(data['TotalPrice'].values.reshape(-1,1)) x_train, y_train, x_test, y_test = suanfa.split_data(data[['Year','Month','TotalPrice']], 4) input_dim = 3 hidden_dim = 12 num_layers = 1 output_dim = 1 model = suanfa.LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers) model.load_state_dict(torch.load('model_lstm.pth')) test_inputs = torch.from_numpy(np.array(data[['Year','Month','TotalPrice']][-3:].values)) test_inputs = test_inputs.view(1, -1, 3).float() model.eval() y_pred = scaler.inverse_transform(model(test_inputs).detach().numpy()) return jsonify(round(float(y_pred)), 2) if __name__ == '__main__': app.run(debug=True) ``` 注意:在运行之前需要将 `shuju.csv` 文件和 `model_lstm.pth` 文件放到与 `app.py` 文件同一目录下。另外,需要安装 Flask 和 PyTorch 库,可以使用以下命令进行安装: ```shell pip install flask torch pandas scikit-learn ```

相关推荐

最新推荐

recommend-type

【实践】Windows IIS部署python Flask网站.doc

Anaconda3 是一个流行的 Python 数据科学平台,提供了一个全面的 Python 环境,包括 Python 解释器、包管理器、IDE 等。安装 Anaconda3 后,可以使用 pip 安装 Python 模块,并使用 conda 管理 Python 环境。 二、...
recommend-type

Python的Flask框架中@app.route的用法教程

当我们定义一个视图函数并使用`@app.route`装饰它时,Flask会根据指定的URL路径在接收到请求时调用该函数。 例如,下面的代码定义了一个名为`hello_user`的视图函数,它接收一个参数`username`: ```python from ...
recommend-type

Python写的一个定时重跑获取数据库数据

在本文中,我们将探讨如何使用Python编写一个定时任务来重试获取数据库数据,直到成功。这个方法对于大数据处理场景尤其有用,因为它能自动化处理数据获取失败的情况,避免手动干预。 首先,我们需要创建一个数据库...
recommend-type

Pythonweb框架Flask中文手册2020.9最新版.PDF

Flask是一个轻量级、灵活且强大的Python web框架,其核心设计理念是“微”,意味着它提供了一个基本的架构,允许开发者根据需要添加各种扩展来实现复杂的功能。 手册内容分为多个部分,首先介绍了Flask的基本概念和...
recommend-type

Python flask框架如何显示图像到web页面

在`webfig1.py`中,我们定义了一个Flask应用,并设置了一个路由`/`,该路由对应于Web应用的主页。当用户访问该URL时,`build_plot`函数会被调用。在这个函数中,我们首先创建一个BytesIO对象`img`,用于存储图像数据...
recommend-type

多传感器数据融合手册:国外原版技术指南

"Handbook of Multisensor Data Fusion" 是一本由CRC Press LLC出版的国外原版书籍,专注于多传感器数据融合领域。这本书包含了26个章节,全面覆盖了数据融合中的关键议题,如数据关联、目标跟踪、识别以及预处理等。 在数据融合领域,多传感器技术是至关重要的,它涉及多个传感器的协同工作,通过整合来自不同来源的数据来提高信息的准确性和完整性。数据融合不仅仅是简单地将不同传感器收集的信息叠加,而是要进行复杂的处理和分析,以消除噪声,解决不确定性,并提供更可靠的决策依据。这本书深入探讨了这个过程,涵盖了从基础理论到实际应用的各个方面。 数据关联是其中的一个关键主题,它涉及到如何将来自不同传感器的测量值对应到同一个实体上,这对于目标跟踪至关重要。目标跟踪则是监控特定物体或事件在时间序列中的位置和状态,需要处理诸如传感器漂移、目标遮挡和多目标混淆等问题。数据融合在这里的作用是提高跟踪的精度和鲁棒性。 识别部分可能涉及模式识别和分类技术,用于确定传感器数据所代表的对象或事件的身份。预处理步骤则通常包括数据清洗、校准、滤波和标准化等,目的是确保输入数据的质量,以便后续的融合算法能有效地处理。 书中的内容来源于权威且备受尊重的源,并引用了相关材料,列出了多种参考文献。尽管作者和出版商已尽力提供可靠的数据和信息,但他们不对所有材料的准确性和使用后果承担责任。此外,书籍版权受到严格保护,未经许可不得复制或传播,若要进行内部或个人使用,需获得CRC Press LLC的书面许可并支付相应的费用。 "Handbook of Multisensor Data Fusion" 是一份全面且深入的参考资料,对于想要了解和研究多传感器数据融合技术的读者来说,具有极高的价值。无论是学术研究还是实际工程应用,都能从中获取丰富的知识和指导。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【元编程】:Python动态创建和修改函数的运行时魔法

![【元编程】:Python动态创建和修改函数的运行时魔法](https://blog.finxter.com/wp-content/uploads/2021/02/object-1-1024x576.jpg) # 1. 元编程的基本概念和重要性 在软件开发中,元编程(Metaprogramming)是指编写可以操作其他程序代码的代码。它允许程序在运行时生成、修改或者执行代码,这意味着你可以创建一个可以编写或者操作其他代码的系统。元编程的概念对于理解程序如何执行以及如何让程序更有效率和可维护至关重要。在这一章中,我们将简要概述元编程的基础知识,包括它的基本定义、历史背景以及在现代软件工程中的
recommend-type

Visual Studio Code中的python如何多行注释

在Visual Studio Code (VSCode) 中,处理 Python 代码的多行注释,你可以按照以下步骤操作: 1. **使用预设快捷键**: - 转到你要注释的多行文本,按 `Ctrl + Shift + `/ 或 `Cmd + Shift + `/(在Mac上)。这将添加三行开始于 `'''` 的多行字符串注释(三个单引号)。 2. **选择注释风格**: - 另一种方式是在菜单栏选择 "Edit" -> "Toggle Line Comment", 然后从下拉列表中选择 "Triple Quotes",这也适用于多行注释。 3. **使用代码片段**:
recommend-type

MyEclipse快捷键大全,提升编程效率

"myeclipse 快捷键" 在编程的世界里,高效的工作离不开快捷键的运用。MyEclipse作为一款强大的Java集成开发环境,拥有众多实用的快捷键,能够极大地提升开发效率。以下是一些常用且重要的MyEclipse快捷键及其功能: 1. Ctrl+Shift+O:自动导入缺失的类,这是非常常用的一个快捷键,可以帮助你快速整理代码中的导入语句。 2. Ctrl+F:全局查找,可以在当前文件或整个项目中查找指定文本。 3. Ctrl+Shift+K:查找下一个匹配项,与Ctrl+K一起使用可以快速在查找结果之间切换。 4. Ctrl+K:查找上一个匹配项,配合Ctrl+Shift+K可以方便地在查找结果间导航。 5. Ctrl+Z:撤销操作,如同“后悔药”,可以撤销最近的一次编辑。 6. Ctrl+C:复制选中的文本或代码,便于快速复制和粘贴。 7. Ctrl+X:剪切选中的文本或代码,与Ctrl+V配合可以实现剪切并粘贴。 8. Ctrl+1:快速修复,当出现错误或警告时,MyEclipse会提供解决方案,按此快捷键可快速应用建议的修复方法。 9. Alt+/:代码完成,自动补全代码,尤其在编写Java代码时非常实用。 10. Ctrl+A:全选当前文件或编辑器的内容。 11. Delete:删除选中的文本或代码,不选择任何内容时,删除光标所在字符。 12. Alt+Shift+?:查看当前方法或类的JavaDoc,了解函数用途和参数说明。 13. Ctrl+Shift+Space:智能提示,提供当前上下文的代码补全建议。 14. F2:跳转到下一个错误或警告,快速定位问题。 15. Alt+Shift+R:重命名,用于修改变量、方法或类名,所有引用都会相应更新。 16. Alt+Shift+L:列出并切换打开的编辑器。 17. Ctrl+Shift+F6:关闭当前编辑器的下一个标签页。 18. Ctrl+Shift+F7:切换到下一个高亮的匹配项。 19. Ctrl+Shift+F8:切换到上一个高亮的匹配项。 20. Ctrl+F6:切换到下一个打开的编辑器。 21. Ctrl+F7:在当前文件中查找下一个匹配项。 22. Ctrl+F8:在当前文件中查找上一个匹配项。 23. Ctrl+W:关闭当前编辑器。 24. Ctrl+F10:运行配置,可以用来启动应用或测试。 25. Alt+-:打开或关闭当前视图。 26. Ctrl+F3:在当前工作空间中搜索所选内容。 27. Ctrl+Shift+T:打开类型,可以快速查找并打开类文件。 28. F4:打开资源,显示所选资源的详细信息。 29. Shift+F2:跳转到上一次的位置,方便在代码间快速切换。 30. Ctrl+Shift+R:打开资源,全局搜索文件。 31. Ctrl+Shift+H:类型层次结构,查看类的继承关系。 32. Ctrl+G:查找行,快速定位到指定行号。 33. Ctrl+Shift+G:在工作空间中查找引用,追踪代码引用。 34. Ctrl+L:跳转到指定行号,方便快速定位。 35. Ctrl+Shift+U:切换大小写,对选中的文本进行大小写转换。 36. Ctrl+H:全局搜索,可以搜索整个工作空间中的代码。 37. Ctrl+G:查找字符,快速找到特定字符。 38. Ctrl+Shift+L:显示快捷键列表,随时查看所有可用的快捷键。 39. Ctrl+Shift+J:插入内联注释,方便快速添加临时注释。 40. Ctrl+Shift+M:引入所需导入的包,自动导入缺少的包。 41. Ctrl+Shift+O:优化导入,删除未使用的导入,并自动排序。 42. Ctrl+Shift+F:格式化代码,按照预设的代码风格进行格式化。 43. Ctrl+/:块注释,选中的代码会被注释掉。 44. Ctrl+\:取消块注释,恢复被注释的代码。 45. Ctrl+Shift+M:快速添加try/catch块,简化异常处理。 46. Ctrl+Shift+F4:关闭所有打开的编辑器。 47. Alt+Enter:显示上下文敏感的帮助或修复建议。 48. Ctrl+N:新建,创建新的文件或项目。 49. Ctrl+B:跳转到定义,快速查看变量或方法的定义。 50. Ctrl+Shift+F:格式化代码,与Ctrl+F不同的是,它会格式化整个文件。 51. Ctrl+/:行注释,对当前行进行注释。 52. Ctrl+Shift+/:块注释,选中的多行代码会被注释掉。 53. F7:在调试模式下,步进进入方法。 54. F6:在调试模式下,步过方法,不会进入方法内部。 55. F5:在调试模式下,强制步进进入方法,即使方法是native或者已经被优化。 56. Ctrl:选中多个选项,如在重构或查找替换时。 通过熟练掌握这些MyEclipse快捷键,你可以更加高效地编写和管理代码,提高编程的生产力。记得经常练习和使用,它们将成为你编程生涯中的得力助手。