帮我写一份简单的基于深度学习图像识别的垃圾分类系统利用python代码
时间: 2023-12-07 20:02:19 浏览: 73
好的,以下是一个基于深度学习图像识别的垃圾分类系统的简单代码:
```
# 导入所需库
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 定义参数
batch_size = 32
img_height = 224
img_width = 224
# 创建数据生成器
train_data = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
validation_split=0.2) # 切分训练集和验证集
train_generator = train_data.flow_from_directory(
'path/to/training_data',
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical',
subset='training') # 训练集生成器
validation_generator = train_data.flow_from_directory(
'path/to/training_data',
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical',
subset='validation') # 验证集生成器
# 构建模型
num_classes = 6
model = Sequential([
layers.Conv2D(32, 3, activation='relu', input_shape=(img_height, img_width, 3)),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(128, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes, activation='softmax')
])
# 编译模型
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
epochs = 10
history = model.fit(
train_generator,
epochs=epochs,
validation_data=validation_generator)
# 保存模型
model.save('garbage_classification_model.h5')
```
这个代码主要包括数据生成器、模型构建、模型编译、模型训练和模型保存几个步骤。你需要根据数据集的具体情况来修改路径和参数。同时,你还需要准备好一个垃圾分类的数据集,可以参考这个数据集:https://www.kaggle.com/asdasdasasdas/garbage-classification。
阅读全文