用matlab编随机游动MH抽样方法,似然函数为p(⃗y|θ) =1/(2 π σ2 )( n/ 2) exp(−1/(2σ)^2 nX i=1 (yi − α − xi β)^ 2 ),先验分布为α ∼ N (0, 5) ,β˜ ∼ U(0, 10) , ˜σ ∼ U(0, 30),提议分布为θ ˜∗ = θ ˜(s−1) + z, z ∼ N (0, Σ),where Σ a diagonal matrix, whose diagonal elements are the diagonal elements of the inverse of the negative Hessian matrix of ˜p(θ) evaluated at θ (0), i.e. Define the acceptance probability ,αs = min( p(⃗y|θ*)*p(θ*)/ p(⃗y|θ ^(s−1)) p(θ^(s−1)) , 1 ), Set θ (s) = θ ∗ if U(0, 1) ≤ αs and θ (s) = θ (s−1) otherwise
时间: 2024-03-22 14:39:02 浏览: 59
用MATLAB实现的随机抽样方法
以下是用Matlab编写随机游动MH抽样方法的示例代码:
```matlab
% 设置初始值
alpha = normrnd(0, 5);
beta = unifrnd(0, 10);
sigma = unifrnd(0, 30);
theta = [alpha, beta, sigma];
% 设置迭代次数和初始步长
N = 10000;
step = diag([1, 1, 1]);
% 初始化存储抽样结果的矩阵
samples = zeros(N, 3);
% 计算似然函数
y = [1, 2, 3, 4, 5];
n = length(y);
p = @(theta) 1/(2*pi*theta(3)^2)^(n/2) * exp(-1/(2*theta(3)^2)*sum((y-theta(1)-theta(2)*(1:n)).^2));
% 设置提议分布和接受率
proposal = @(theta) mvnrnd(theta, step);
acceptance = @(theta, theta_star) min(p(theta_star)*1/(10*30)*1/((10-0)*(30-0))/p(theta)*1/(5*sqrt(2*pi))*exp(-theta_star(1)^2/(2*5^2))...
*exp(-theta_star(2)/(10))*exp(-theta_star(3)/(30))/exp(-theta(1)^2/(2*5^2))*exp(-theta(2)/(10))*exp(-theta(3)/(30)), 1);
% 开始迭代
for i = 1:N
% 产生候选样本
theta_star = proposal(theta);
% 计算接受率
alpha_s = acceptance(theta, theta_star);
% 判断是否接受候选样本
if rand < alpha_s
theta = theta_star;
end
% 存储样本
samples(i, :) = theta;
end
```
需要注意的是,由于该似然函数的形式较为简单,可以直接计算,但在实际应用中,似然函数可能会非常复杂,难以直接计算。此时可以使用MCMC方法进行抽样,如Metropolis-Hastings抽样方法。此外,还需要根据具体的问题设置合适的先验分布和提议分布,并计算接受率。
阅读全文