%% 读取视频 video_file='/Users/zxh-mac/Desktop/我不是药神/我不是药神.mp4'; video=VideoReader(video_file); video.FrameRate; frame_number=floor(video.Duration* video.FrameRate);%Duration代表整个视频时间,FrameRate代表视频帧率 n=150;%n每150帧取一张图片,如果n=video.FrameRate*150每150秒取一帧 %% 分离图片 k=1; for i=1:n:frame_number image_name=strcat('/Users/zxh-mac/Desktop/我不是药神',num2str(k)); image_name=strcat(image_name,'.png'); I=read(video,i); %读出图片 imwrite(I,image_name,'png'); %写图片 k=k+1; I=[]; end
时间: 2024-03-04 17:51:07 浏览: 82
这是一段MATLAB代码,用于从视频中分离出一些帧作为图片。具体来说,这段代码读取一个名为“我不是药神.mp4”的视频文件,然后将其中的帧按一定规则(每150帧取一帧)分离出来,保存为png格式的图片。图片保存的路径为“/Users/zxh-mac/Desktop/我不是药神”下,文件名为数字序号。这段代码还可以通过调整变量n的值,来修改取帧的规则。
相关问题
import pandas as pd from keras.models import Sequential from keras.layers import Dense import numpy as np from sklearn.metrics import accuracy_score file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx') # 第二阶段:转化定性变量为定量变量 使用onehot函数 同时读取新的excel x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 第三阶段:实现bp神经网络 train_data = data[:320] test_data = data[320:] train_features = train_data.drop('Class', axis=1).values train_labels = train_data['Class'].values test_features = test_data.drop('Class', axis=1).values test_labels = test_data['Class'].values model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1) predictions = model.predict(test_features) print(predictions)就是这段 无法确定问题是什么
这段代码的格式有些混乱,建议您按照以下方式进行修改:
1. 将 "import" 语句放在文件开头,便于管理和查看。
2. 在 "import" 语句后加上空行,使代码更易读。
3. 将代码分成多行,以提高可读性。
4. 确认文件路径是否正确,可以使用绝对路径来避免路径错误的问题。
5. 确认您是否安装了 keras 和 sklearn 库。
修改后的代码如下:
```
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import accuracy_score
# 读取文件
file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx')
# 使用onehot函数转换定性变量为定量变量
x = pd.get_dummies(file, dtype=int)
x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
# 读取新的excel
data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
# 划分训练集和测试集
train_data = data[:320]
test_data = data[320:]
# 提取特征和标签
train_features = train_data.drop('Class', axis=1).values
train_labels = train_data['Class'].values
test_features = test_data.drop('Class', axis=1).values
test_labels = test_data['Class'].values
# 建立模型
model = Sequential()
model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1]))
model.add(Dense(units=72, activation='relu'))
model.add(Dense(units=3, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1)
# 预测测试集
predictions = model.predict(test_features)
print(predictions)
```
如果问题还存在,建议您给出具体的错误信息或者提示,以便我们更好地帮助您解决问题。
import pandas as pd from keras.models import Sequential from keras.layers import Dense import warnings warnings.filterwarnings("ignore") file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx')x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 第三阶段:实现bp神经网络 train_data = data[:320] test_data = data[320:] train_features = train_data.drop('Class', axis=1) train_labels = train_data['Class'] test_features = test_data.drop('Class', axis=1) test_labels = test_data['Class'] model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels)) predictions = model.predict(test_features)
这段代码使用了Python中的pandas、keras等库,实现了一个简单的bp神经网络模型进行分类任务。
首先,代码从一个Excel文件中读取数据:
```python
file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx')
```
然后,使用`pd.get_dummies()`方法将数据进行one-hot编码:
```python
x = pd.get_dummies(file, dtype=int)
x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
```
接下来,读取one-hot编码后的数据:
```python
data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
```
然后将数据集划分为训练集和测试集:
```python
train_data = data[:320]
test_data = data[320:]
```
从训练集和测试集中分离出特征和标签:
```python
train_features = train_data.drop('Class', axis=1)
train_labels = train_data['Class']
test_features = test_data.drop('Class', axis=1)
test_labels = test_data['Class']
```
然后,使用Keras库中的Sequential模型创建bp神经网络,添加三层全连接层,并使用sigmoid函数作为激活函数:
```python
model = Sequential()
model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1]))
model.add(Dense(units=72, activation='relu'))
model.add(Dense(units=3, activation='sigmoid'))
```
接下来,编译模型,使用二元交叉熵作为损失函数,adam作为优化器,并使用准确率作为评估指标:
```python
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
```
使用训练集对模型进行训练:
```python
model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels))
```
最后,使用测试集对模型进行预测:
```python
predictions = model.predict(test_features)
```
这段代码实现了一个简单的bp神经网络模型,用于进行分类任务。
阅读全文