用数据结构中的队列和C语言编写某银行有一个客户办理业务站,在单位时间内随机地有客户到达,设每位客户的业务办理时间是某个范围内的随机值。设只有一个窗口,一位业务人员,要求程序模拟统计在设定时间内,业务人员的总空闲时间和客户的平均等待时间。从本地text.txt文件中读取每位客户到达时间和需要办理业务的时间。

时间: 2023-06-23 22:08:29 浏览: 89
以下是基于队列的C语言程序实现: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #define MAX_QUEUE_SIZE 100 // 队列最大长度 #define MAX_SERVICE_TIME 10 // 最大业务办理时间 #define MIN_SERVICE_TIME 1 // 最小业务办理时间 // 客户结构体 typedef struct { int arrive_time; // 到达时间 int service_time; // 业务办理时间 int start_time; // 开始办理时间 int end_time; // 结束办理时间 } Customer; // 队列结构体 typedef struct { Customer data[MAX_QUEUE_SIZE]; int front; // 队头指针 int rear; // 队尾指针 } Queue; // 初始化队列 void initQueue(Queue *queue) { queue->front = queue->rear = 0; } // 判断队列是否为空 int isQueueEmpty(Queue *queue) { return queue->front == queue->rear; } // 判断队列是否已满 int isQueueFull(Queue *queue) { return (queue->rear + 1) % MAX_QUEUE_SIZE == queue->front; } // 入队 int enQueue(Queue *queue, Customer customer) { if (isQueueFull(queue)) { return 0; } queue->data[queue->rear] = customer; queue->rear = (queue->rear + 1) % MAX_QUEUE_SIZE; return 1; } // 出队 int deQueue(Queue *queue, Customer *customer) { if (isQueueEmpty(queue)) { return 0; } *customer = queue->data[queue->front]; queue->front = (queue->front + 1) % MAX_QUEUE_SIZE; return 1; } int main() { Queue queue; initQueue(&queue); int total_idle_time = 0; // 总空闲时间 int total_wait_time = 0; // 总等待时间 int total_serve_time = 0; // 总办理时间 int total_customer = 0; // 客户总数 int current_time = 0; // 当前时间 int service_start_time = 0; // 当前业务开始时间 int service_end_time = 0; // 当前业务结束时间 srand(time(NULL)); // 初始化随机种子 FILE *fp = fopen("text.txt", "r"); // 打开文件 if (fp == NULL) { printf("File open failed!\n"); return -1; } while (!feof(fp)) { int arrive_time, service_time; fscanf(fp, "%d %d", &arrive_time, &service_time); // 从文件中读取数据 Customer customer = {arrive_time, service_time, 0, 0}; if (customer.arrive_time >= current_time) { // 业务人员空闲 total_idle_time += customer.arrive_time - current_time; service_start_time = customer.arrive_time; } else { // 业务人员忙碌 service_start_time = current_time; } service_end_time = service_start_time + customer.service_time; // 计算业务结束时间 customer.start_time = service_start_time; customer.end_time = service_end_time; enQueue(&queue, customer); // 将客户加入队列 total_serve_time += customer.service_time; // 更新总办理时间 current_time = customer.arrive_time; // 更新当前时间 while (!isQueueEmpty(&queue)) { Customer front; if (deQueue(&queue, &front)) { total_wait_time += current_time - front.arrive_time; // 更新总等待时间 current_time = front.end_time; // 更新当前时间 total_customer++; // 更新客户总数 } else { break; } } } fclose(fp); // 关闭文件 printf("Total idle time: %d\n", total_idle_time); printf("Average waiting time: %.2f\n", (float)total_wait_time / total_customer); return 0; } ``` 程序中使用了两个结构体,一个是客户结构体,包括客户到达时间、业务办理时间、开始办理时间和结束办理时间;另一个是队列结构体,包括队列数据和队头、队尾指针。程序中使用了队列来模拟客户排队等待办理业务的过程。 程序中先从文件中读取客户到达时间和需要办理业务的时间,然后判断业务人员是否空闲,计算业务开始时间和结束时间,并将客户加入队列。接着,程序从队列中取出客户进行业务办理,更新总等待时间、客户总数和当前时间。最后统计总空闲时间和平均等待时间,并输出结果。 程序中使用了随机数生成客户的业务办理时间,为了使结果更加真实,可以根据实际情况调整最大和最小业务办理时间。

相关推荐

最新推荐

recommend-type

C++数据结构与算法之双缓存队列实现方法详解

双缓存队列通过使用两个队列A和B,交替写入和读取数据,避免了数据丢失的问题。 知识点二:双缓存队列的实现方法 双缓存队列的实现方法可以使用C++实现,通过使用模板类DoubleArray来实现双缓存队列。DoubleArray...
recommend-type

数据结构(C语言版)1800道题及答案[完整版].doc

数据结构是计算机科学中的核心概念,它研究如何有效地组织和管理数据,以便进行高效的检索和操作。C语言是一种强大的编程语言,常用于实现数据结构。本资料提供了1800道数据结构相关的练习题和答案,适合于考研复习...
recommend-type

数据结构C语言版栈和队列的应用编程

"数据结构C语言版栈和队列的应用编程" 数据结构是计算机科学中的一门重要课程,它研究的是计算机存储、表示和处理数据的方法和技术。栈和队列是数据结构中两种基本的数据类型,它们广泛应用于计算机科学和信息技术...
recommend-type

C语言用栈和队列实现的回文检测功能示例

C语言用栈和队列实现的回文检测功能示例 在计算机科学中,回文检测是指判断给定的字符串是否是一个回文的操作。回文是一种特殊的字符串,它可以从左到右阅读或从右到左阅读,结果是一样的。例如,字符串"madam"就是...
recommend-type

C语言数据结构优先队列实现

优先队列是0个或多个元素的集合,每个元素都有一个优先权或值,对优先队列执行的操作有1) 查找;2) 插入一个新元素;3) 删除。 本程序的实现 二. 实现本优先队列的初始化,查找,插入,删除操作,并且控制其查找,插入...
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。