for i, params in enumerate(grid_search.param_grid): print(f"Testing combination {i+1}/{len(grid_search.param_grid)}: {params}") grid_search.fit(X_train, y_train) print(f"Score: {grid_search.best_score_:.3f}\n")
时间: 2024-02-16 16:03:19 浏览: 92
这段代码的作用是进行网格搜索,并在每个参数组合完成验证之后输出评分。具体来说,这段代码的执行过程如下:
1. 使用 `enumerate()` 函数遍历 `grid_search.param_grid` 中的每一个参数组合。`i` 表示当前参数组合的索引,`params` 表示当前参数组合的取值。
2. 输出当前正在测试的参数组合的信息,包括当前参数组合的索引、总共需要测试的参数组合数量,以及当前参数组合的取值。
```
print(f"Testing combination {i+1}/{len(grid_search.param_grid)}: {params}")
```
3. 使用当前参数组合对 `grid_search` 进行拟合,并在训练集和验证集上进行交叉验证。
```
grid_search.fit(X_train, y_train)
```
4. 输出当前参数组合在训练集上的交叉验证分数。
```
print(f"Score: {grid_search.best_score_:.3f}\n")
```
其中,`grid_search.best_score_` 表示当前最优的交叉验证分数。在每个参数组合完成验证之后,我们都会输出当前参数组合的交叉验证分数,以便我们及时了解当前参数组合的效果。
相关问题
x_train, t_train, x_test, t_test = load_data('F:\\2023\\archive\\train') network = DeepConvNet() network.load_params("deep_convnet_params.pkl") print("calculating test accuracy ... ") sampled = 1000 x_test = x_test[:sampled] t_test = t_test[:sampled] prediect_result = [] for i in x_test: i = np.expand_dims(i, 0) y = network.predict(i) _result = network.predict(i) _result = softmax(_result) result = np.argmax(_result) prediect_result.append(int(result)) acc_number = 0 err_number = 0 for i in range(len(prediect_result)): if prediect_result[i] == t_test[i]: acc_number += 1 else: err_number += 1 print("预测正确数:", acc_number) print("预测错误数:", err_number) print("预测总数:", x_test.shape[0]) print("预测正确率:", acc_number / x_test.shape[0]) classified_ids = [] acc = 0.0 batch_size = 100 for i in range(int(x_test.shape[0] / batch_size)): tx = x_test[i * batch_size:(i + 1) * batch_size] tt = t_test[i * batch_size:(i + 1) * batch_size] y = network.predict(tx, train_flg=False) y = np.argmax(y, axis=1) classified_ids.append(y) acc += np.sum(y == tt) acc = acc / x_test.shape[0] classified_ids = np.array(classified_ids) classified_ids = classified_ids.flatten() max_view = 20 current_view = 1 fig = plt.figure() fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.2, wspace=0.2) mis_pairs = {} for i, val in enumerate(classified_ids == t_test): if not val: ax = fig.add_subplot(4, 5, current_view, xticks=[], yticks=[]) ax.imshow(x_test[i].reshape(28, 28), cmap=plt.cm.gray_r, interpolation='nearest') mis_pairs[current_view] = (t_test[i], classified_ids[i]) current_view += 1 if current_view > max_view: break print("======= 错误预测结果展示 =======") print("{view index: (label, inference), ...}") print(mis_pairs) plt.show()
这段代码是一个深度卷积神经网络用于对手写数字图像进行分类的代码。首先,通过load_data函数加载训练数据和测试数据集,然后使用DeepConvNet()创建了一个深度卷积神经网络,并通过load_params函数加载了预训练的参数。接着,从测试集中选取了1000个样本进行测试,并用predict函数对每个样本进行预测,将预测结果存储在predict_result列表中。然后,计算预测的正确率,并将错误预测结果展示出来。最后,调用show函数展示错误预测结果。
generator = build_lstm_generator(seq_len, hidden_size, n_embeddings,compiler=False) discriminator = build_lstm_discriminator(seq_len + 1, hidden_size, n_embeddings) optimizer = Adam(learning_rate=0.0001) save_freq = 1000 gen_losses = Mean() dis_losses = Mean() for i,(x_inputs,x_outputs) in enumerate(dataset): gen_loss,dis_loss = train_on_step(x_inputs,x_outputs) gen_losses.update_state(gen_loss) dis_losses.update_state(dis_loss) if (i+1) % save_freq == 0: generator.save_weights(f"saved_models/iter-{(i+1)//save_freq}.h5") if i % 20 == 0: print(f'iter: {i}, generatorLoss: {gen_losses.result()}, discriminatorLoss: {dis_losses.result()}') gen_losses.reset_state() dis_losses.reset_state()
这段代码中,首先使用`build_lstm_generator()`函数和`build_lstm_discriminator()`函数分别创建了一个生成器和一个判别器,并使用`Adam()`函数定义了一个Adam优化器,学习率为0.0001。`seq_len`、`hidden_size`、`n_embeddings`等参数用于指定模型的超参数。
接着,代码使用`enumerate()`函数遍历了`dataset`中的每个batch,并调用`train_on_step()`函数对生成器和判别器进行一次训练。在训练过程中,代码使用`Mean()`函数分别计算了生成器损失和判别器损失的平均值,并使用`update_state()`函数更新了平均损失值。同时,代码还定义了一个变量`save_freq`,表示每训练多少个batch就保存一次模型。
在每次保存模型后,代码使用`print()`函数输出当前的迭代次数、生成器损失和判别器损失。这里使用了字符串插值的语法,即在输出字符串中使用`{}`占位符来引用变量的值。同时,代码还使用了`reset_state()`函数清空了平均损失值,以便下一个batch的计算。
总体来说,这段代码实现了对生成器和判别器的训练,并定期保存模型。在训练过程中,代码还输出了生成器损失和判别器损失的平均值。
阅读全文
相关推荐

















