之前的解向量满足Min_pump_zcjj = 1 Max_pump_zcjj = 51 # 靶点——老井点约束条件 Min_pump_bdljd = 1 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]]),要求随机生成的解向量如何也要满足这个上下限定
时间: 2024-02-14 22:08:09 浏览: 74
在这个优化算法中,需要在随机生成解向量的过程中满足一些上下限约束条件,可以使用Python的`random.randint`函数来生成随机整数,然后根据上下限范围进行限制,确保生成的解向量的每个元素都在规定的范围内。以下是生成满足约束条件的随机解向量的示例代码:
```
while len(solutions) < optimizer.population_size:
x = [random.randint(Min_pump_zcjj, Max_pump_zcjj),
random.randint(Min_pump_bdljd, Max_pump_bdljd),
random.uniform(Min_pump_bdwz, Max_pump_bdwz),
random.randint(Min_pump_skhd, Max_pump_skhd)]
value = quadratic(x[0], x[1], x[2], x[3])
solutions.append((x, value))
```
在上述代码中,使用`random.randint`函数生成前三个元素的随机整数,使用`random.uniform`函数生成第四个元素的随机小数。同时,使用`bounds`列表来存储上下限约束条件,确保生成的解向量的每个元素都在规定的范围内。
相关问题
已知初始值的范围为Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
好的,那么您可以按照如下方式修改代码:
```python
import cma
import numpy as np
def optimize():
# 目标函数
def objective_function(params):
bd_X, bd_Y, x3, x4 = params
# 这里用随机生成的值代替目标函数的输出
return np.random.random()
# 设置初始值和范围
x0 = [38.5, 38.5, 0.5, 3.0]
sigma0 = 0.2
Min_pump_zcjj = 26
Max_pump_zcjj = 51
Min_pump_bdljd = 26
Max_pump_bdljd = 51
Min_pump_bdwz = 0
Max_pump_bdwz = 1
Min_pump_skhd = 1
Max_pump_skhd = 5
bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
# 运行优化算法
res = cma.fminbound(objective_function, x0, sigma0, bounds)
# 输出最优值和最优解
print(f"最优解:{res[0]}")
print(f"最优值:{res[1]}")
if __name__ == "__main__":
optimize()
```
在这个示例代码中,我们使用了 `cma.fminbound()` 函数进行优化,其中 `objective_function` 函数是我们要优化的目标函数,输入为一组参数 `params`,输出为目标函数的值。`x0` 是优化的初始值,`sigma0` 是初始步长,`bounds` 是参数范围。最终输出最优解和最优值。请根据实际情况将 `objective_function` 函数替换为您的目标函数,然后设置相应的参数范围。
def main(): # X坐标束条件 Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])
这段代码是用Python编写的,它定义了一个名为main()的函数。在函数中,将四个约束条件的取值范围存储在一个名为bounds的numpy数组中。这个数组有四个元素,每个元素代表了一个约束条件的最小值和最大值。第一个元素代表X坐标束条件的最小值和最大值,第二个元素代表Y坐标约束条件的最小值和最大值,第三个元素代表靶点位置约束条件的最小值和最大值,第四个元素代表射孔厚度约束条件的最小值和最大值。
阅读全文