补全代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.optimize as opt # S 型函数 def sigmoid(z): #返回 sigmoid 的函数值,z 为函数变量(参考编程要求中的 sigmoid 函数) #********** Begin **********# #********** End **********# #代
时间: 2023-06-12 22:07:42 浏览: 89
入数据和标签 data = pd.read_csv('ex2data1.txt', header=None, names=['Exam 1', 'Exam 2', 'Admitted']) X = np.array(data.iloc[:, :-1]) y = np.array(data.iloc[:, -1]) # 可视化数据 def plotData(X, y): pos = np.where(y == 1) neg = np.where(y == 0) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='k') plt.scatter(X[neg, 0], X[neg, 1], marker='o', c='y') plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') plt.legend(['Admitted', 'Not admitted']) plt.show() plotData(X, y)
相关问题
import numpy as np import pandas as pd import matplotlib.pyplot as plt
这三个库都是Python中常用的数据分析和可视化库。其中,NumPy是Python中用于科学计算的基础库,提供了高性能的多维数组和矩阵计算功能。Pandas是基于NumPy的一个数据处理库,提供了高效的数据结构和数据分析工具。Matplotlib是Python中最流行的数据可视化库之一,提供了各种绘图工具和图表类型,可以用于生成各种静态和动态的图表。
以下是一个简单的例子,展示如何使用这三个库绘制一个柱状图:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 创建数据
bar_positions = [1, 2, 3, 4]
bar_heights = [1, 2, 3, 4]
# 绘制柱状图
fig, ax = plt.subplots()
ax.bar(np.arange(len(bar_positions)), bar_heights)
# 设置x轴标签
ax.set_xticks(np.arange(len(bar_positions)))
ax.set_xticklabels(bar_positions)
# 设置y轴标签
ax.set_ylabel('Bar Heights')
# 设置图表标题
ax.set_title('A Simple Bar Chart')
# 显示图表
plt.show()
```
import pandas as pd import numpy as np import matplotlib.pyplot as plt
当你在 Python 中使用 `import pandas as pd`, `import numpy as np`, 和 `import matplotlib.pyplot as plt` 这些语句时,你是在导入几个非常流行的数据分析和可视化库:
1. **pandas**: pandas 是一个强大的数据处理库,常用于数据清洗、整理、分析和操作。它提供了 DataFrame 对象,这是用于存储表格型数据的主要数据结构,以及 Series 对象,类似一维数组,非常适合进行数据操作和分析。
2. **numpy**: numpy 是科学计算的基础库,主要专注于高效地处理大型数组和矩阵运算,提供了大量的数学函数和工具,是其他许多数据处理库的基础。
3. **matplotlib.pyplot**: matplotlib 是一个绘图库,通过 `pyplot` 模块提供了一个简单的接口来创建各种图表,包括线图、柱状图、散点图等。它是 Python 最常用的绘图工具之一。
有了这三者,你可以方便地处理数据、执行数值计算,并将结果以可视化的方式呈现出来。
阅读全文