if st.button("提交", key="predict") : with st.spinner("容我三思......🖥️"): st.session_state["state"] = predict(prompt_text, 4096, 1.0, 1.0, st.session_state["state"]) 调整为:按 Ctrl+Enter 即可发送
时间: 2023-07-21 15:04:11 浏览: 251
你可以尝试使用 `st.form_submit_button` 来实现按下 Ctrl+Enter 键发送的功能。具体的代码修改如下:
```python
if st.form_submit_button("提交"):
with st.spinner("容我三思......🖥️"):
st.session_state["state"] = predict(prompt_text, 4096, 1.0, 1.0, st.session_state["state"])
```
这样,当你在输入框中按下 Ctrl+Enter 键时,就会触发表单提交,而不需要点击按钮。
相关问题
if st.button("提交", key="predict"): with st.spinner("容我三思......🖥️"): # text generation # st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"]) st.session_state["state"] = predict(prompt_text, 4096, 1.0, 1.0, st.session_state["state"]) 这段话,除了点击提交,键盘回车也可以实现提交
如果你想实现在按下提交按钮之外,通过键盘回车也能触发提交的功能,你可以使用Streamlit的`st.text_input`方法结合`st.form_submit_button`方法来实现。
首先,你可以使用`st.text_input`方法创建一个文本输入框,并将用户输入的文本赋值给一个变量,比如`user_input`:
```python
user_input = st.text_input("请输入文本", key="user_input")
```
然后,你可以使用`st.form_submit_button`方法创建一个表单提交按钮,并在按钮按下时触发提交操作:
```python
if st.form_submit_button(label="提交") or st.session_state.get("enter_pressed"):
with st.spinner("容我三思......🖥️"):
# 进行提交操作
st.session_state["state"] = predict(user_input, 4096, 1.0, 1.0, st.session_state["state"])
```
在上面的代码中,我们使用了一个`enter_pressed`的session_state变量来表示是否按下了回车键。接下来,我们需要在Streamlit应用程序中添加一个事件监听器来捕获回车键按下事件,并将`enter_pressed`设置为True:
```python
if st.session_state.get("enter_pressed") is None:
st.session_state["enter_pressed"] = False
# 添加事件监听器
if user_input:
js_code = f"""
<script>
document.getElementById("{user_input.key}").addEventListener("keydown", function(event) {{
if (event.key === "Enter") {{
event.preventDefault();
streamlit.setComponentValue("{user_input.key}", true);
}}
}});
</script>
"""
st.components.v1.html(js_code)
# 将enter_pressed设置为True
if st.session_state.get("enter_pressed"):
st.session_state["enter_pressed"] = False
```
通过上述代码,当用户在文本输入框中按下回车键时,JavaScript代码会触发一个事件,在Streamlit应用程序中将`enter_pressed`设置为True。
这样,无论是点击提交按钮还是按下回车键,都可以触发提交操作。
希望这能帮助到你!如果你有任何其他问题,请随时提问。
from transformers import AutoModel, AutoTokenizer import streamlit as st from streamlit_chat import message st.set_page_config( page_title="ChatGLM-6b 演示", page_icon=":robot:" ) @st.cache_resource def get_model(): tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() model = model.eval() return tokenizer, model MAX_TURNS = 20 MAX_BOXES = MAX_TURNS * 2 def predict(input, max_length, top_p, temperature, history=None): tokenizer, model = get_model() if history is None: history = [] with container: if len(history) > 0: if len(history)>MAX_BOXES: history = history[-MAX_TURNS:] for i, (query, response) in enumerate(history): message(query, avatar_style="big-smile", key=str(i) + "_user") message(response, avatar_style="bottts", key=str(i)) message(input, avatar_style="big-smile", key=str(len(history)) + "_user") st.write("AI正在回复:") with st.empty(): for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, temperature=temperature): query, response = history[-1] st.write(response) return history container = st.container() # create a prompt text for the text generation prompt_text = st.text_area(label="用户命令输入", height = 100, placeholder="请在这儿输入您的命令") max_length = st.sidebar.slider( 'max_length', 0, 4096, 2048, step=1 ) top_p = st.sidebar.slider( 'top_p', 0.0, 1.0, 0.6, step=0.01 ) temperature = st.sidebar.slider( 'temperature', 0.0, 1.0, 0.95, step=0.01 ) if 'state' not in st.session_state: st.session_state['state'] = [] if st.button("发送", key="predict"): with st.spinner("AI正在思考,请稍等........"): # text generation st.session_state["state"] = predict(prompt_text, max_length, top_p, temperature, st.session_state["state"])逐句解析代码
这段代码是一个基于 ChatGLM-6B 模型的 AI 对话系统的 Streamlit 应用程序。它从 transformers 库中导入了 AutoModel 和 AutoTokenizer,以及 Streamlit 库中的 message 函数。然后,它定义了一个用于获取模型和分词器的函数 get_model,并使用 st.cache_resource 装饰器将其缓存,以避免重复加载模型和分词器。接下来,它定义了 MAX_TURNS 和 MAX_BOXES 常量,以及一个 predict 函数,它接受输入、max_length、top_p、temperature 和 history 参数,并返回一个历史记录。predict 函数使用 get_model 函数获取模型和分词器,然后使用 model.stream_chat 方法对输入进行处理,并将输出逐步显示在 Streamlit 应用程序的界面上。最后,它定义了一个包含一个文本区域和一个发送按钮的用户界面,用户可以在文本区域中输入命令,并按下发送按钮将命令发送给 AI。当用户按下发送按钮时,程序将调用 predict 函数来生成 AI 的回复,并将历史记录保存在 st.session_state 中。
阅读全文