铁电 spi 多个页写操作

时间: 2023-11-18 14:01:13 浏览: 28
铁电(SPI)是一种用于存储非易失性数据的技术,它可以在断电或重启后保留数据。而进行多个页面的写操作可以实现在一个短时间内同时写入多个页面的功能。 铁电(SPI)多个页写操作指的是在同一时间内将多个页面的数据同时写入到铁电存储器中。这种操作可以提高写入数据的效率,节约时间和资源。 在进行铁电(SPI)多个页写操作时,首先需要确定要写入的多个页面的位置和大小。然后将这些页面的数据传输到存储器的写入缓冲区中,再按照指定的顺序将数据写入到相应的页面中。在整个写入过程中需要精确控制数据的顺序和传输速度,确保数据能够准确地写入到目标页面中。 值得注意的是,在进行铁电(SPI)多个页写操作时,需要确保存储器有足够的空间来容纳所有的页面数据,避免数据丢失或者写入失败。此外,还需要考虑页面之间的相互影响和冲突,确保数据写入的稳定性和可靠性。 总的来说,铁电(SPI)多个页写操作是一种高效的数据写入方式,可以提高数据传输的速度和效率,适用于需要大量数据写入的场景,如嵌入式系统、存储设备等。
相关问题

spi读写fm25cl64铁电存

要使用SPI读写FM25CL64铁电存,需要先配置SPI接口的相关参数,包括时钟频率、数据位数、极性、相位等。然后按照FM25CL64的通信协议进行读写操作,具体步骤如下: 1. 将CS引脚拉低,使FM25CL64进入SPI模式; 2. 发送读写命令和地址; 3. 发送数据; 4. 将CS引脚拉高,结束通信。 以下是一个示例代码,假设使用的是STM32F4xx系列的MCU: ```c #include "stm32f4xx.h" #define CS_PIN GPIO_Pin_0 #define CS_PORT GPIOA void SPI_Configuration(void) { SPI_InitTypeDef SPI_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1); GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1); GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1); SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_Init(SPI1, &SPI_InitStructure); SPI_Cmd(SPI1, ENABLE); } void FM25CL64_WriteByte(uint8_t addr, uint8_t data) { GPIO_ResetBits(CS_PORT, CS_PIN); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI1, 0x02); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); SPI_I2S_ReceiveData(SPI1); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI1, addr); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); SPI_I2S_ReceiveData(SPI1); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI1, data); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); SPI_I2S_ReceiveData(SPI1); GPIO_SetBits(CS_PORT, CS_PIN); } uint8_t FM25CL64_ReadByte(uint8_t addr) { uint8_t data; GPIO_ResetBits(CS_PORT, CS_PIN); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI1, 0x03); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); SPI_I2S_ReceiveData(SPI1); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI1, addr); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); SPI_I2S_ReceiveData(SPI1); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); SPI_I2S_SendData(SPI1, 0x00); while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); data = SPI_I2S_ReceiveData(SPI1); GPIO_SetBits(CS_PORT, CS_PIN); return data; } int main(void) { uint8_t data; SPI_Configuration(); FM25CL64_WriteByte(0x00, 0x55); data = FM25CL64_ReadByte(0x00); while (1); } ```

gd32e103 SPI读写操作

gd32e103是一款基于ARM Cortex-M3内核的微控制器,它支持SPI总线的读写操作。下面是SPI读写操作的基本步骤: 1. 配置SPI口线路,包括时钟、数据输入输出口等。 2. 配置SPI控制器,包括工作模式、数据位数、时钟极性、相位等。 3. 通过SPI口向外部设备发送数据,或从外部设备接收数据。 以下是一个简单的SPI读写操作的示例代码: ```c #include "gd32e10x.h" void spi_init(void) { /* 配置SPI口线路 */ rcu_periph_clock_enable(RCU_GPIOB); gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15); /* 配置SPI控制器 */ rcu_periph_clock_enable(RCU_SPI0); spi_parameter_struct spi_init_struct; spi_init_struct.trans_mode = SPI_TRANSMODE_FULLDUPLEX; spi_init_struct.device_mode = SPI_MASTER; spi_init_struct.frame_size = SPI_FRAMESIZE_8BIT; spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE; spi_init_struct.nss = SPI_NSS_SOFT; spi_init_struct.prescale = SPI_PSC_8; spi_init_struct.endian = SPI_ENDIAN_MSB; spi_init(SPI0, &spi_init_struct); /* 使能SPI控制器 */ spi_enable(SPI0); } uint8_t spi_read_write_byte(uint8_t byte) { /* 发送数据 */ spi_i2s_data_transmit(SPI0, byte); /* 等待数据接收完成 */ while (RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_RBNE)); /* 读取接收到的数据 */ return spi_i2s_data_receive(SPI0); } int main(void) { spi_init(); /* 读取外部设备的数据 */ uint8_t data = spi_read_write_byte(0x00); /* 发送数据到外部设备 */ spi_read_write_byte(0x55); while (1); } ```

相关推荐

zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

最新推荐

recommend-type

QCA7000 SPI UART Protocol.pdf

文档描述了高通QCA7000的SPI通讯协议,里面有对外部数据的读取操作说明和SPI波形示例,可以供开发设计参考
recommend-type

STM32 SPI接口读写SPI flash实验

1.学习SPI的基本工作原理 2.通过实验加深对STM32SPI的理解 3. 利用STM32的SPI11和SPI接口的flash芯片进行通信,读写测试,并将测试结果用串口打印出来
recommend-type

HAL3900 SPI命令格式说明

HAL 39xy是TDK Micronas推出的新一代3D定位传感器,解决了杂散场鲁棒位置传感器(线性和角度)以及符合ISO 26262标准的开发需求。在此提供给了HAL3900 SPI命令格式的调试说明。
recommend-type

STM32的使用之SPI通信DMA模式

MCU:STM32F303VC,在SPI通信中,可以同时开启发送和接收DMA请求,自动数据的发送和接收,完成数据的交换。
recommend-type

一种3线制半双工SPI接口设计

 串行外围设备接口SPI(serial peripheralinterface)总线技术是Motorola公司推出的一种微处理器、微控制器及其外设间的一种全/半双工同步串行数据接口标准,具有连接线少、传输效率...,与SPI有关的软件就相当简单...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。