void GA(int funNum) { int FEs; population pop; srand(time(NULL)); // 初始化种群 for (int i = 0; i < NP; i++) { for (int j = 0; j < D; j++) { pop.indiv[i].dim[j] = LOWBOUND[funNum - 1] + rand() * (UPBOUND[funNum - 1] - LOWBOUND[funNum - 1]); } } benchmark(pop, funNum); //计算适应度 // 迭代 //FEs = NP; !!!!!! FEs =0 应该赋值为1 FEs = 1; int MAXFES = 100; // 最大迭代次数 一共从1迭代到100次 while (FEs < MAXFES) { nextGeneration(pop, funNum); FEs += NP; } for (int i = 0; i < NP; i++) printf("%.6f\n", pop.indiv[i].fitness); }

时间: 2024-03-31 14:32:26 浏览: 18
这段代码是一个遗传算法的框架,用于解决优化问题。其中,GA函数是主函数,参数funNum表示要优化的目标函数编号。代码中首先初始化种群,并计算每个个体的适应度。然后进行迭代,每次迭代都生成下一代种群,并计算每个个体的适应度。迭代次数达到最大值后,输出每个个体的适应度。 但是,我注意到代码中有一个错误。FEs应该初始化为1,而不是0,因为在代码的后面,每次迭代都会增加NP个适应度函数调用次数,因此最终的FEs应该等于迭代次数乘以种群大小NP。
相关问题

void GA(int funNum) { int FEs; population pop; srand(time(NULL)); // 初始化种群 for (int i = 0; i < NP; i++) { for (int j = 0; j < D; j++) { pop.indiv[i].dim[j] = LOWBOUND[funNum - 1] + rand() * (UPBOUND[funNum - 1] - LOWBOUND[funNum - 1]); } } benchmark(pop, funNum); //计算适应度 // 迭代 //FEs = NP; FEs = 1; int MAXFES = 100; // 最大迭代次数 一共从1迭代到100次 while (FEs < MAXFES) { nextGeneration(pop, funNum); FEs += NP; } for (int i = 0; i < NP; i++) printf("%.6f\n", pop.indiv[i].fitness); }

这段代码是一个遗传算法的框架,用于解决优化问题。以下是代码中各部分的具体含义及作用: 1. `int FEs`:表示适应度函数调用次数,即所谓的“函数评价次数”,初始值为1。 2. `population pop`:表示种群,其中包含多个个体,每个个体包含多个基因(即解的某个部分)。 3. `srand(time(NULL))`:用于生成随机数种子。 4. `for (int i = 0; i < NP; i++)`:初始化种群中的每个个体。 5. `for (int j = 0; j < D; j++)`:初始化每个个体中的每个基因,其中LOWBOUND和UPBOUND分别表示每个基因的取值下界和上界。 6. `benchmark(pop, funNum)`:计算种群中每个个体的适应度,即所谓的“目标函数值”。 7. `while (FEs < MAXFES)`:进行遗传算法的迭代,直到达到最大迭代次数为止。 8. `nextGeneration(pop, funNum)`:生成下一代种群。 9. `FEs += NP`:增加适应度函数调用次数,即增加种群大小NP个。 10. `for (int i = 0; i < NP; i++)`:输出每个个体的适应度函数值。 需要注意的是,这段代码中省略了部分细节,例如如何生成下一代种群、如何选择和交叉个体等。具体实现的正确性还需要根据完整的代码和具体问题进行分析。

void GA(int funNum) { int FEs; population pop; srand(time(NULL)); // 初始化种群 for (int i = 0; i < NP; i++) { for (int j = 0; j < D; j++) { pop.indiv[i].dim[j] = LOWBOUND[funNum - 1] + rand() * (UPBOUND[funNum - 1] - LOWBOUND[funNum - 1]); } } benchmark(pop, funNum); //计算适应度 // 迭代 //FEs = NP; FEs = 1; int MAXFES = 100; // 最大迭代次数 一共从1迭代到100次 while (FEs < MAXFES) { nextGeneration(pop, funNum); FEs += NP; } for (int i = 0; i < NP; i++) printf("%.6f\n", pop.indiv[i].fitness); }

这段代码是遗传算法(Genetic Algorithm)的实现,用于寻找函数最优解。其中,GA函数的输入参数funNum是函数编号,用于区分不同的函数;FEs代表函数评价次数;pop是种群,包含多个个体;srand(time(NULL))用于生成随机数种子,确保每次运行结果不同。 首先,使用循环初始化种群,每个个体的每个维度随机生成一个值,值的范围由LOWBOUND和UPBOUND决定。然后,通过调用benchmark函数计算种群中每个个体的适应度(fitness)。 接下来是迭代过程,循环执行nextGeneration函数,直到达到最大迭代次数MAXFES。每次迭代,FEs加上种群大小NP,表示函数评价次数。nextGeneration函数实现了遗传算法的核心操作,包括选择、交叉、变异等。最终,输出每个个体的适应度。

相关推荐

4 Experiments This section examines the effectiveness of the proposed IFCS-MOEA framework. First, Section 4.1 presents the experimental settings. Second, Section 4.2 examines the effect of IFCS on MOEA/D-DE. Then, Section 4.3 compares the performance of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on 19 test problems. Finally, Section 4.4 compares the performance of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on four real-world application problems. 4.1 Experimental Settings MOEA/D-DE [23] is integrated with the proposed framework for experiments, and the resulting algorithm is named IFCS-MOEA/D-DE. Five surrogate-based MOEAs, i.e., FCS-MOEA/D-DE [39], CPS-MOEA [41], CSEA [29], MOEA/DEGO [43] and EDN-ARM-OEA [12] are used for comparison. UF1–10, LZ1–9 test problems [44, 23] with complicated PSs are used for experiments. Among them, UF1–7, LZ1–5, and LZ7–9 have 2 objectives, UF8–10, and LZ6 have 3 objectives. UF1–10, LZ1–5, and LZ9 are with 30 decision variables, and LZ6–8 are with 10 decision variables. The population size N is set to 45 for all compared algorithms. The maximum number of FEs is set as 500 since the problems are viewed as expensive MOPs [39]. For each test problem, each algorithm is executed 21 times independently. For IFCS-MOEA/D-DE, wmax is set to 30 and η is set to 5. For the other algorithms, we use the settings suggested in their papers. The IGD [6] metric is used to evaluate the performance of each algorithm. All algorithms are examined on PlatEMO [34] platform.

最新推荐

recommend-type

SAP R/3 事务码速查手册SAP R/3 事务码速查手册

19.6.4 BC-DB-DB2 DB2 for OS/390 370 19.7 BC-FES-GUI 图形用户接口 370 19.7.1 BC-FES-GRA 图形 371 19.7.2 BC-FES-DEI 桌面集成 371 19.7.3 BC-FES-INS 前端安装 372 19.7.4 BC-FES-SEM 会议经理 372 19.8 BC-DWB...
recommend-type

基于改进YOLO的玉米病害识别系统(部署教程&源码)

毕业设计:基于改进YOLO的玉米病害识别系统项目源码.zip(部署教程+源代码+附上详细代码说明)。一款高含金量的项目,项目为个人大学期间所做毕业设计,经过导师严格验证通过,可直接运行 项目代码齐全,教程详尽,有具体的使用说明,是个不错的有趣项目。 项目(高含金量项目)适用于在学的学生,踏入社会的新新工作者、相对自己知识查缺补漏或者想在该等领域有所突破的技术爱好者学习,资料详尽,内容丰富,附上源码和教程方便大家学习参考,
recommend-type

非系统Android图片裁剪工具

这是Android平台上一个独立的图片裁剪功能,无需依赖系统内置工具。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:Python环境变量配置实战:Win10系统下Python环境变量配置详解

![python配置环境变量win10](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量配置概述 环境变量是计算机系统中存储和管理配置信息的特殊变量。在Python中,环境变量用于指定Python解释器和库的安装路径,以及其他影响