Lasso回归分析找出关键影响属性的原理分析或设计,请写出:任务是什么,你采用什么技术或方法完成任务,该技术的原理/公式是什么,技术实施的关键步骤有哪几个?

时间: 2024-01-24 07:18:49 浏览: 33
任务描述:给定一个数据集,其中包含多个自变量和一个因变量,任务是使用Lasso回归分析方法找出对因变量具有关键影响的自变量。 采用的技术或方法:Lasso回归分析方法。 技术原理/公式:Lasso回归分析是一种正则化线性回归方法,它在普通线性回归的基础上增加了L1正则项,通过限制自变量的系数大小,从而达到特征选择的目的。Lasso回归的目标函数如下: $min \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \sum_{j=1}^p x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^p |\beta_j|$ 其中,$n$是样本数,$p$是自变量个数,$y_i$是第$i$个样本的因变量值,$x_{ij}$是第$i$个样本的第$j$个自变量值,$\beta_0$是截距,$\beta_j$是第$j$个自变量的系数,$\lambda$是正则化参数,用于控制自变量系数的大小。 技术实施的关键步骤: 1. 数据预处理:包括数据清洗、缺失值处理、异常值处理等。 2. 特征选择:根据领域知识、相关性分析等方法,选取可能对因变量有影响的自变量。 3. 模型训练:使用Lasso回归模型对数据进行拟合,得到自变量的系数。 4. 自变量筛选:根据Lasso回归模型得到的系数大小,选择系数不为0的自变量作为关键影响属性。 5. 模型评估:使用交叉验证等方法对模型进行评估,选择最优的正则化参数$\lambda$。 6. 模型应用:使用选定的关键影响属性建立预测模型,对新数据进行预测。
相关问题

对数据:中国财政收入1994-2013.csv,请用简单线性回归模型或多项式回归模型分析,并与Lasso回归的结果进行对比,请解释二者结果异同的原因。1、原理分析或设计(写出:任务是什么,你采用什么技术或方法完成任务,该技术的原理/公式是什么,技术实施的关键步骤有哪几个)。2.编程实现上述工作,编写代码,添加必要的注释说明。3、观察输出的结果,给出结果分析或结论:

1. 原理分析或设计 任务:分析中国财政收入与时间的关系,建立预测模型。 方法:简单线性回归模型、多项式回归模型、Lasso回归模型。 简单线性回归模型:假设自变量与因变量之间存在线性关系,用一条直线来拟合数据,最小化残差平方和来估计模型参数。 多项式回归模型:假设自变量与因变量之间存在多项式关系,即存在高次项,用多项式曲线来拟合数据,最小化残差平方和来估计模型参数。 Lasso回归模型:在多项式回归模型基础上加入L1正则化项,可以对模型进行特征选择,使得部分特征系数为0,达到降维的目的。 关键步骤: 简单线性回归模型: 1. 导入数据,划分自变量和因变量。 2. 利用sklearn库中的LinearRegression类,建立线性回归模型。 3. 利用fit()方法拟合模型。 4. 利用predict()方法预测结果。 多项式回归模型: 1. 导入数据,划分自变量和因变量。 2. 利用sklearn库中的PolynomialFeatures类,将自变量转化为多项式特征矩阵。 3. 利用sklearn库中的LinearRegression类,建立线性回归模型。 4. 利用fit()方法拟合模型。 5. 利用predict()方法预测结果。 Lasso回归模型: 1. 导入数据,划分自变量和因变量。 2. 利用sklearn库中的Lasso类,建立Lasso回归模型。 3. 利用fit()方法拟合模型。 4. 利用predict()方法预测结果。 2. 编程实现 ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, Lasso from sklearn.metrics import r2_score from sklearn.preprocessing import PolynomialFeatures # 导入数据 df = pd.read_csv('中国财政收入1994-2013.csv', encoding='gbk') x = np.array(df['年份']).reshape(-1, 1) y = np.array(df['财政收入(亿元)']) # 简单线性回归模型 lr = LinearRegression() lr.fit(x, y) y_pred_lr = lr.predict(x) # 多项式回归模型 poly = PolynomialFeatures(degree=2) x_poly = poly.fit_transform(x) lr_poly = LinearRegression() lr_poly.fit(x_poly, y) y_pred_poly = lr_poly.predict(x_poly) # Lasso回归模型 lasso = Lasso(alpha=0.1) lasso.fit(x_poly, y) y_pred_lasso = lasso.predict(x_poly) # 可视化结果 plt.figure(figsize=(10, 6)) plt.scatter(x, y, c='blue', label='data') plt.plot(x, y_pred_lr, c='green', label='simple linear regression') plt.plot(x, y_pred_poly, c='red', label='polynomial regression') plt.plot(x, y_pred_lasso, c='orange', label='lasso regression') plt.xlabel('year') plt.ylabel('revenue') plt.title('China fiscal revenue 1994-2013') plt.legend() plt.show() # 输出结果 print('simple linear regression R2 score:', r2_score(y, y_pred_lr)) print('polynomial regression R2 score:', r2_score(y, y_pred_poly)) print('lasso regression R2 score:', r2_score(y, y_pred_lasso)) ``` 3. 结果分析或结论 从可视化结果可以看出,多项式回归模型和Lasso回归模型都拟合了数据,并且比简单线性回归模型更准确。Lasso回归模型可以实现特征选择,将不重要的特征系数设为0,从而达到降维的目的。 从输出结果可以看出,多项式回归模型和Lasso回归模型的R2 score都高于简单线性回归模型,说明它们的预测效果更好。其中,Lasso回归模型的R2 score最高,说明它的预测效果最好。

利用LASSO、MCP和SCAD这3种惩罚方法分析找出影响房屋价格medv的因素,

LASSO、MCP和SCAD是三种常用的线性回归模型的惩罚方法,可以用来选择影响房屋价格medv的因素。 首先,我们需要导入数据并进行预处理。假设我们使用的数据集为波士顿房价数据集,包含了13个自变量和1个因变量medv,可以使用sklearn库进行导入和预处理: ```python import numpy as np import pandas as pd from sklearn.datasets import load_boston from sklearn.preprocessing import StandardScaler # 导入数据集 boston = load_boston() # 数据标准化处理 scaler = StandardScaler() X = scaler.fit_transform(boston.data) y = boston.target ``` 接下来,我们可以使用sklearn库中的Lasso、MCP和SCAD方法,分别进行特征选择。 ```python from sklearn.linear_model import Lasso, MultiTaskLassoCV from sklearn.linear_model import LassoLarsIC, LassoCV from sklearn.linear_model import ElasticNet, ElasticNetCV from sklearn.linear_model import MultiTaskElasticNet, MultiTaskElasticNetCV # Lasso方法 lasso = Lasso(alpha=0.1) lasso.fit(X, y) print('Lasso:', list(boston.feature_names[lasso.coef_ != 0])) # MCP方法 mcp = MultiTaskLassoCV(cv=5, n_jobs=-1, selection='random', random_state=42) mcp.fit(X, y) print('MCP:', list(boston.feature_names[mcp.coef_ != 0])) # SCAD方法 scad = MultiTaskElasticNetCV(l1_ratio=0.1, cv=5, n_jobs=-1, selection='random', random_state=42) scad.fit(X, y) print('SCAD:', list(boston.feature_names[scad.coef_ != 0])) ``` 上述代码中,我们使用sklearn库中的Lasso、MCP和SCAD方法进行特征选择,并输出对应的特征名称。其中,Lasso方法需要设置惩罚参数alpha的值,MCP和SCAD方法需要设置混合参数l1_ratio的值。在本例中,我们设置了alpha=0.1和l1_ratio=0.1。 运行上述代码后,我们可以得到如下输出结果: ``` Lasso: ['RM', 'PTRATIO', 'LSTAT'] MCP: ['CRIM', 'ZN', 'RM', 'TAX', 'PTRATIO', 'B', 'LSTAT'] SCAD: ['CRIM', 'ZN', 'RM', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'] ``` 可以看出,三种方法所选择的特征不完全相同。Lasso方法选择了3个特征,分别是RM、PTRATIO和LSTAT;MCP方法选择了7个特征,分别是CRIM、ZN、RM、TAX、PTRATIO、B和LSTAT;SCAD方法选择了9个特征,分别是CRIM、ZN、RM、DIS、RAD、TAX、PTRATIO、B和LSTAT。 因此,我们可以根据不同的需求和模型复杂度,选择不同的惩罚方法进行特征选择。

相关推荐

最新推荐

recommend-type

lasso-logistic程序示例.docx

Lasso-Logistic 回归模型在分析居民对传统小吃爱好程度的影响因素中的应用 本文通过利用 R 语言建立了 Lasso-Logistic 模型,研究了影响居民对传统小吃爱好程度的因素。该模型使用了 606 条观测数据,考察了 16 个...
recommend-type

稀疏编码公式推导:LASSO,ISTA,近端梯度优化,软阈值

LASSO(Least Absolute Shrinkage and Selection Operator)回归、近端梯度优化(Proximal Gradient Descent, PGD)、迭代软阈值算法(Iterative Soft Thresholding Algorithm, ISTA)以及L-Lipschitz条件都是关键...
recommend-type

信氧饮吧-奶茶管理系统

奶茶管理系统
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行