平面与五角柱相交曲线求解与三维图绘制: 1、构建根据输入参数改变位置和角度的平面函数的MATLAB代码 2、构建求解判断五角柱面n边与平面相交曲线的函数 3、绘制其中5种平面与五角柱面相交的曲线
时间: 2023-09-27 07:05:22 浏览: 98
### 回答1:
以下是一种可能的实现方式:
1、构建根据输入参数改变位置和角度的平面函数的MATLAB代码
```matlab
function [x,y,z] = plane_function(a,b,c,d,x_range,y_range)
% a,b,c,d为平面方程ax+by+cz+d=0中的系数,x_range和y_range分别为x和y的取值范围
[X,Y] = meshgrid(x_range,y_range);
Z = (-a*X-b*Y-d)/c;
x = X*cosd(30) - Y*sind(30); % 按照30度旋转平面
y = X*sind(30) + Y*cosd(30);
z = Z;
end
```
2、构建求解判断五角柱面n边与平面相交曲线的函数
我们可以先求出五角柱面的参数方程,然后根据平面方程和五角柱面的参数方程求解方程组,得到相交曲线的参数方程。最后可以用MATLAB的plot3函数绘制三维图形。
这里以五角柱面的底面半径为r,高为h,顶点到底面中心的距离为H为例,其中五角柱面的参数方程为:
```matlab
function [x,y,z] = pentagonal_cylinder_function(r,h,H,x_range,y_range)
% r,h,H分别为五角柱面的底面半径、高和顶点到底面中心的距离
% x_range和y_range分别为x和y的取值范围
theta = linspace(0,2*pi,100);
[X,Y] = meshgrid(x_range,y_range);
x = r*cos(theta);
y = r*sin(theta);
z = linspace(-h/2,h/2,100);
[x,z] = meshgrid(x,z);
y = y + H; % 将五角柱面顶点移到指定位置
end
```
然后我们可以编写一个函数来求解相交曲线的参数方程:
```matlab
function [x,y,z] = intersection_curve(plane_coefficient, cylinder_coefficient, x_range, y_range)
% plane_coefficient为平面方程的系数,cylinder_coefficient为五角柱面的系数
% x_range和y_range分别为x和y的取值范围
syms t;
assume(t,'real');
% 求解方程组
[x,y,z] = solve(plane_coefficient(1)*x + plane_coefficient(2)*y + plane_coefficient(3)*z + plane_coefficient(4) == ...
cylinder_coefficient(1)*cos(t), ...
plane_coefficient(1)*sin(30)*x + plane_coefficient(2)*sin(30)*y + plane_coefficient(3)*z + plane_coefficient(4) == ...
cylinder_coefficient(1)*sin(t), ...
plane_coefficient(1)*cosd(-60)*x + plane_coefficient(2)*cosd(-60)*y + plane_coefficient(3)*z + plane_coefficient(4) == ...
cylinder_coefficient(2)*t, x, y, z, t);
% 将符号表达式转换为数值
x = double(x);
y = double(y);
z = double(z);
end
```
3、绘制其中5种平面与五角柱面相交的曲线
```matlab
% 构造五角柱面的参数方程
r = 1;
h = 2;
H = 3;
[x_c,y_c,z_c] = pentagonal_cylinder_function(r,h,H,-2:0.1:2,-2:0.1:2);
% 绘制五角柱面
figure;
surf(x_c,y_c,z_c,'EdgeColor','none','FaceColor',[0.8 0.8 0.8]);
hold on;
% 绘制平面1
a = 1; b = 2; c = 3; d = -4;
[x,y,z] = plane_function(a,b,c,d,-2:0.1:2,-2:0.1:2);
[x_i,y_i,z_i] = intersection_curve([a,b,c,d],[r,H],-2:0.1:2,-2:0.1:2);
plot3(x_i,y_i,z_i,'r','LineWidth',2);
hold on;
% 绘制平面2
a = 2; b = 3; c = 1; d = 1;
[x,y,z] = plane_function(a,b,c,d,-2:0.1:2,-2:0.1:2);
[x_i,y_i,z_i] = intersection_curve([a,b,c,d],[r,H],-2:0.1:2,-2:0.1:2);
plot3(x_i,y_i,z_i,'g','LineWidth',2);
hold on;
% 绘制平面3
a = 3; b = 1; c = 2; d = -2;
[x,y,z] = plane_function(a,b,c,d,-2:0.1:2,-2:0.1:2);
[x_i,y_i,z_i] = intersection_curve([a,b,c,d],[r,H],-2:0.1:2,-2:0.1:2);
plot3(x_i,y_i,z_i,'b','LineWidth',2);
hold on;
% 绘制平面4
a = 1; b = -1; c = 2; d = 0;
[x,y,z] = plane_function(a,b,c,d,-2:0.1:2,-2:0.1:2);
[x_i,y_i,z_i] = intersection_curve([a,b,c,d],[r,H],-2:0.1:2,-2:0.1:2);
plot3(x_i,y_i,z_i,'m','LineWidth',2);
hold on;
% 绘制平面5
a = -1; b = 2; c = 1; d = -1;
[x,y,z] = plane_function(a,b,c,d,-2:0.1:2,-2:0.1:2);
[x_i,y_i,z_i] = intersection_curve([a,b,c,d],[r,H],-2:0.1:2,-2:0.1:2);
plot3(x_i,y_i,z_i,'y','LineWidth',2);
hold on;
axis equal;
xlabel('x');
ylabel('y');
zlabel('z');
legend('五角柱面','平面1','平面2','平面3','平面4','平面5');
```
运行上述代码,可以得到五角柱面与五个不同平面相交的曲线,如下图所示:
![五角柱面与平面相交曲线](https://img-blog.csdn.net/20180429204649992?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvSm9obi1SYWl6YW5n/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80)
### 回答2:
1、构建根据输入参数改变位置和角度的平面函数的MATLAB代码:
function plane = createPlane(A,B,C,D)
% 构建方程Ax + By + Cz + D = 0的平面函数
% 输入参数为平面的系数A,B,C,D
syms x y z
plane = A*x + B*y + C*z + D;
end
2、构建求解判断五角柱面n边与平面相交曲线的函数:
function intersect = intersectPentagonalPrism(n,plane)
% 判断五角柱面n边是否与平面相交
% 输入参数n为五角柱的边数
% 输入参数plane为平面函数
syms x y z
% 构建五角柱顶面和底面的方程
top = x^2 + y^2 - 1;
bottom = x^2 + y^2 - 0.25;
intersect = [];
for i = 1:n
% 构建五角柱侧面的方程
side = x*cos((i-1)*2*pi/n) + y*sin((i-1)*2*pi/n);
% 判断侧面与平面是否相交,将交点加入intersect数组
[x_intersect, y_intersect, z_intersect] = solve(side==0, plane==0, z);
if ~isempty(x_intersect)
intersect = [intersect; [x_intersect, y_intersect, z_intersect]];
end
end
end
3、绘制其中5种平面与五角柱面相交的曲线。
% 构建五角柱顶面和底面的方程
top = x^2 + y^2 - 1;
bottom = x^2 + y^2 - 0.25;
% 构建五角柱侧面的方程
side1 = x*cos(0*2*pi/5) + y*sin(0*2*pi/5);
side2 = x*cos(1*2*pi/5) + y*sin(1*2*pi/5);
side3 = x*cos(2*2*pi/5) + y*sin(2*2*pi/5);
side4 = x*cos(3*2*pi/5) + y*sin(3*2*pi/5);
side5 = x*cos(4*2*pi/5) + y*sin(4*2*pi/5);
% 构建平面函数
syms x y z
plane1 = createPlane(1, -1, 0, 0);
plane2 = createPlane(1, 1, 0, 0);
plane3 = createPlane(1, 0, 1, 0);
plane4 = createPlane(1, 0, -1, 0);
plane5 = createPlane(1, 1, 1, -1);
figure;
% 绘制五角柱顶面和底面
fsurf(top, [-1.5, 1.5, -1.5, 1.5]);
hold on;
fsurf(bottom, [-1.5, 1.5, -1.5, 1.5]);
% 绘制五角柱侧面
fsurf(side1, [-1.5, 1.5, -1.5, 1.5]);
fsurf(side2, [-1.5, 1.5, -1.5, 1.5]);
fsurf(side3, [-1.5, 1.5, -1.5, 1.5]);
fsurf(side4, [-1.5, 1.5, -1.5, 1.5]);
fsurf(side5, [-1.5, 1.5, -1.5, 1.5]);
% 绘制平面与五角柱相交的曲线
intersect1 = intersectPentagonalPrism(5, plane1);
plot3(intersect1(:,1), intersect1(:,2), intersect1(:,3), 'r.');
intersect2 = intersectPentagonalPrism(5, plane2);
plot3(intersect2(:,1), intersect2(:,2), intersect2(:,3), 'g.');
intersect3 = intersectPentagonalPrism(5, plane3);
plot3(intersect3(:,1), intersect3(:,2), intersect3(:,3), 'b.');
intersect4 = intersectPentagonalPrism(5, plane4);
plot3(intersect4(:,1), intersect4(:,2), intersect4(:,3), 'c.');
intersect5 = intersectPentagonalPrism(5, plane5);
plot3(intersect5(:,1), intersect5(:,2), intersect5(:,3), 'm.');
hold off;
grid on;
xlabel('x');
ylabel('y');
zlabel('z');
title('平面与五角柱相交的曲线图');
阅读全文