基于遗传算法求解同时取送货的车辆路径问题,用一段代码解决
时间: 2024-01-16 09:05:17 浏览: 70
遗传算法求解车辆路径问题
5星 · 资源好评率100%
以下是一个简单的基于遗传算法求解同时取送货的车辆路径问题的 Python 代码:
```python
import random
# 车辆路径问题的参数
POP_SIZE = 50 # 种群数量
CROSS_RATE = 0.8 # 交叉率
MUTATION_RATE = 0.1 # 变异率
N_GENERATIONS = 50 # 迭代次数
CITY_COUNT = 10 # 城市数量
CITY_POS = {i: [random.randint(0, 20), random.randint(0, 20)] for i in range(CITY_COUNT)} # 城市位置
# 计算路径长度
def get_distance(city1, city2):
return ((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2) ** 0.5
# 计算适应度
def get_fitness(path):
distance = 0
for i in range(CITY_COUNT - 1):
distance += get_distance(CITY_POS[path[i]], CITY_POS[path[i + 1]])
return 1 / distance
# 初始化种群
def init_population():
pop = []
for _ in range(POP_SIZE):
path = list(range(CITY_COUNT))
random.shuffle(path)
pop.append(path)
return pop
# 交叉
def crossover(parent1, parent2):
if random.random() < CROSS_RATE:
child = [-1] * CITY_COUNT
start, end = sorted([random.randint(0, CITY_COUNT - 1) for _ in range(2)])
child[start:end] = parent1[start:end]
for i in range(CITY_COUNT):
if parent2[i] not in child:
for j in range(CITY_COUNT):
if child[j] == -1:
child[j] = parent2[i]
break
return child
else:
return parent1
# 变异
def mutate(child):
if random.random() < MUTATION_RATE:
start, end = sorted([random.randint(0, CITY_COUNT - 1) for _ in range(2)])
child[start:end] = reversed(child[start:end])
return child
# 选择
def select(pop, fitness):
idx1 = random.randint(0, POP_SIZE - 1)
idx2 = random.randint(0, POP_SIZE - 1)
return pop[idx1] if fitness[idx1] > fitness[idx2] else pop[idx2]
# 主函数
def main():
pop = init_population()
for generation in range(N_GENERATIONS):
fitness = [get_fitness(path) for path in pop]
print('Generation {}: {}'.format(generation, max(fitness)))
new_pop = []
for _ in range(POP_SIZE):
parent1 = select(pop, fitness)
parent2 = select(pop, fitness)
child = crossover(parent1, parent2)
child = mutate(child)
new_pop.append(child)
pop = new_pop
if __name__ == '__main__':
main()
```
在这个代码中,我们首先定义了车辆路径问题的一些参数:种群数量、交叉率、变异率、迭代次数和城市数量。然后,我们生成了随机的城市位置,并且实现了计算路径长度、计算适应度、初始化种群、交叉、变异和选择等函数。最后,我们在主函数中按照遗传算法的流程进行迭代,直到达到指定的迭代次数。
这段代码虽然简单,但是可以作为一个基础的车辆路径问题求解器。你可以根据自己的需求,对其进行更加精细的调整和改进。
阅读全文