flink读取kafka写到kudu
时间: 2023-09-05 18:14:00 浏览: 119
flink 实现将kafka的数据读取出来,并经过xml配置和重写算子方式实现数据处理
4星 · 用户满意度95%
以下是使用Flink从Kafka读取数据并将其写入Kudu的示例代码:
```java
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kudu.KuduSink;
import org.apache.flink.streaming.connectors.kudu.KuduTableInfo;
import org.apache.flink.streaming.connectors.kudu.serialization.KuduSerialization;
import org.apache.kudu.client.KuduClient;
import java.util.Properties;
public class FlinkKafkaKuduExample {
public static void main(String[] args) throws Exception {
// set up the streaming execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// configure Kafka consumer properties
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test-group");
// create a Kafka consumer
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("test-topic", new SimpleStringSchema(), properties);
// create a Kudu table information object
KuduTableInfo tableInfo = KuduTableInfo.Builder.create("test-table")
.addColumn("column1", "STRING")
.addColumn("column2", "INT32")
.addPrimaryKeyColumn("column1")
.build();
// create a Kudu serialization object
KuduSerialization<String> serialization = new KuduSerialization<>(tableInfo);
// create a Kudu sink
KuduSink<String> kuduSink = new KuduSink<>(new KuduClient.KuduClientBuilder("localhost:7051").build(), serialization);
// add the Kafka source to the execution environment
DataStream<String> kafkaDataStream = env.addSource(kafkaConsumer);
// add the Kudu sink to the execution environment
kafkaDataStream.addSink(kuduSink);
// execute the Flink job
env.execute("Flink Kafka Kudu Example");
}
}
```
在该示例中,我们使用了FlinkKafkaConsumer将Kafka主题中的数据读取到DataStream中,并使用KuduSink将其写入Kudu表中。我们还使用了KuduTableInfo和KuduSerialization来定义Kudu表的模式和序列化方式。最后,我们将Kafka数据流连接到Kudu数据流,并执行Flink作业。
阅读全文