from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score,confusion_matrix import numpy as np # 导入iris数据集 iris = load_iris() # 提取数据集中的特征数据 X = iris.data # 提取label y = iris.target # 划分训练集和测试集 X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=42,test_size=0.5,stratify=y) # 导入决策树,设置参数,最大深度为3,使用gini系数 tree = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=42) # 拟合训练集 tree.fit(X_train,y_train) # 预测测试集 y_predict = tree.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test,y_predict) # 混淆矩阵 cm = confusion_matrix(y_test,y_predict) TP = np.diag(cm) FN = cm.sum(axis=1) - np.diag(cm) FP = cm.sum(axis=0) - np.diag(cm) TN = cm.sum() - (TP+FN+FP) recall = TP / (TP+FN) # Overall Accuracy OA = (TP+TN) / (TP+FN+FP+TN) print(OA) # Average Accuracy AA = recall.sum() / len(recall) print(AA)将每个部分分析一下

时间: 2024-02-27 17:51:47 浏览: 21
好的,下面是代码的分析: 1. 导入需要的库: ``` from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score,confusion_matrix import numpy as np ``` 这里导入了scikit-learn的iris数据集、决策树分类器、数据集划分函数、准确率和混淆矩阵评估指标以及numpy库。 2. 提取数据集中的特征数据和标签数据: ``` iris = load_iris() X = iris.data y = iris.target ``` 这里使用load_iris函数导入iris数据集,然后分别提取数据集中的特征数据和标签数据。 3. 划分训练集和测试集: ``` X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=42,test_size=0.5,stratify=y) ``` 这里使用train_test_split函数将数据集划分为训练集和测试集,并且设置了随机种子random_state为42,测试集占比为50%,并且按照标签y进行分层划分。 4. 定义决策树分类器,设置参数: ``` tree = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=42) ``` 这里定义了一个决策树分类器,并且设置了criterion为'gini'表示使用gini系数作为分裂标准,最大深度为3,随机种子为42。 5. 拟合训练集: ``` tree.fit(X_train,y_train) ``` 这里使用fit函数拟合训练集,训练出决策树模型。 6. 预测测试集: ``` y_predict = tree.predict(X_test) ``` 这里使用predict函数预测测试集的标签。 7. 计算准确率和混淆矩阵: ``` accuracy = accuracy_score(y_test,y_predict) cm = confusion_matrix(y_test,y_predict) ``` 这里使用accuracy_score函数计算准确率,使用confusion_matrix函数计算混淆矩阵。 8. 计算分类指标: ``` TP = np.diag(cm) FN = cm.sum(axis=1) - np.diag(cm) FP = cm.sum(axis=0) - np.diag(cm) TN = cm.sum() - (TP+FN+FP) recall = TP / (TP+FN) OA = (TP+TN) / (TP+FN+FP+TN) AA = recall.sum() / len(recall) ``` 这里使用numpy库计算分类指标,包括真正例TP、假负例FN、假正例FP、真负例TN、召回率recall、总准确率OA和平均准确率AA。 9. 输出结果: ``` print(OA) print(AA) ``` 最后输出总准确率OA和平均准确率AA。

相关推荐

解释下列代码作用:from sklearn import datasets import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score # 加载莺尾花数据集 iris = datasets.load_iris() # 获取特征数据 data = iris.data # 获取分类标签 target = iris.target # 获取分类标签名称 target_names = iris.target_names # 打印数据形状 print("data shape: ", data.shape) print("target shape: ", target.shape) # 打印分类标签名称 print("target names: ", target_names) # 获取第一条数据的特征数据和分类标签 s = data[0] d = target[0] print("data数组: ", s) print("target数组: ", d) # 取出特征和标签数据 x = iris.data y = iris.target # 绘制二维散点图 plt.scatter(x[:, 0], x[:, 1], c=y) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() plt.scatter(data[target == 0, 2], data[target == 0, 3], color='blue') plt.scatter(data[target == 1, 2], data[target == 1, 3], color='orange') plt.scatter(data[target == 2, 2], data[target == 2, 3], color='green') plt.show() # 绘制三维散点图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y) ax.set_xlabel('Sepal length') ax.set_ylabel('Sepal width') ax.set_zlabel('Petal length') plt.show() # 将数据集拆分为培训和测试数据集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) # 根据问题(分类或回归)选择算法(决策树算法) clf = DecisionTreeClassifier(criterion='gini') # 将训练数据集传递给算法进行训练 clf.fit(x_train, y_train) # 将测试数据传递给经过训练的算法,以预测结果 y_pred = clf.predict(x_test) # 比较预测结果和真实值,给出算法准确性 accuracy = accuracy_score(y_test, y_pred) print("准确性: {:.2f}%".format(accuracy * 100))

最新推荐

recommend-type

ansys maxwell

ansys maxwell
recommend-type

matlab基于不确定性可达性优化的自主鲁棒操作.zip

matlab基于不确定性可达性优化的自主鲁棒操作.zip
recommend-type

pytest-2.8.0.zip

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

信息安全课程实验C++实现DES等算法源代码

信息安全课程实验C++实现DES等算法源代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依