基于卷积神经网络的交通路标检测代码实现
时间: 2023-07-20 11:08:39 浏览: 107
这里提供一个基于 TensorFlow 的交通路标检测代码实现示例:
1. 数据集准备
首先,需要准备一个包含交通路标的图片数据集,可以使用公开数据集如 German Traffic Sign Recognition Benchmark (GTSRB) 或自己收集数据。数据集应该包括训练集和测试集,每个样本应该标注其对应的交通路标类别,可以使用 XML 或 CSV 文件存储标注信息。
2. 数据预处理
在读取数据集前,需要进行一些预处理操作,包括将图片大小归一化、将标注信息转化为 TensorFlow 的标签格式等。
```python
import tensorflow as tf
import cv2
import os
import numpy as np
def resize_image(image, width, height):
"""
将图片缩放到指定大小
"""
return cv2.resize(image, (width, height))
def load_dataset(image_dir, label_file):
"""
读取数据集
"""
images = []
labels = []
with open(label_file, 'r') as f:
for line in f.readlines():
image_name, label = line.strip().split(',')
image_path = os.path.join(image_dir, image_name)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = resize_image(image, 32, 32)
images.append(image)
labels.append(int(label))
return np.array(images), np.array(labels)
def preprocess_labels(labels):
"""
将标签转化为 TensorFlow 的标签格式
"""
return tf.one_hot(labels, depth=43)
```
3. 构建模型
本例中,使用卷积神经网络模型实现交通路标检测。卷积神经网络由多个卷积层和池化层构成,最后通过全连接层输出预测结果。
```python
def cnn_model(input_shape, num_classes):
"""
构建卷积神经网络模型
"""
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2)))
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=128, activation='relu'))
model.add(tf.keras.layers.Dropout(rate=0.5))
model.add(tf.keras.layers.Dense(units=num_classes, activation='softmax'))
return model
```
4. 训练模型
使用准备好的训练集和测试集数据,训练卷积神经网络模型。
```python
def train_model(train_images, train_labels, test_images, test_labels, model):
"""
训练模型
"""
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(test_images, test_labels))
```
5. 模型评估
最后,在测试集上评估训练好的模型。
```python
def evaluate_model(test_images, test_labels, model):
"""
在测试集上评估模型
"""
model.evaluate(test_images, test_labels)
```
完整代码如下:
```python
import tensorflow as tf
import cv2
import os
import numpy as np
def resize_image(image, width, height):
"""
将图片缩放到指定大小
"""
return cv2.resize(image, (width, height))
def load_dataset(image_dir, label_file):
"""
读取数据集
"""
images = []
labels = []
with open(label_file, 'r') as f:
for line in f.readlines():
image_name, label = line.strip().split(',')
image_path = os.path.join(image_dir, image_name)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = resize_image(image, 32, 32)
images.append(image)
labels.append(int(label))
return np.array(images), np.array(labels)
def preprocess_labels(labels):
"""
将标签转化为 TensorFlow 的标签格式
"""
return tf.one_hot(labels, depth=43)
def cnn_model(input_shape, num_classes):
"""
构建卷积神经网络模型
"""
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2)))
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=128, activation='relu'))
model.add(tf.keras.layers.Dropout(rate=0.5))
model.add(tf.keras.layers.Dense(units=num_classes, activation='softmax'))
return model
def train_model(train_images, train_labels, test_images, test_labels, model):
"""
训练模型
"""
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(test_images, test_labels))
def evaluate_model(test_images, test_labels, model):
"""
在测试集上评估模型
"""
model.evaluate(test_images, test_labels)
if __name__ == '__main__':
image_dir = 'GTSRB/Final_Training/Images'
label_file = 'GTSRB/Final_Training/GT-final_train.csv'
train_images, train_labels = load_dataset(image_dir, label_file)
image_dir = 'GTSRB/Final_Test/Images'
label_file = 'GTSRB/Final_Test/GT-final_test.csv'
test_images, test_labels = load_dataset(image_dir, label_file)
train_labels = preprocess_labels(train_labels)
test_labels = preprocess_labels(test_labels)
model = cnn_model((32, 32, 3), 43)
train_model(train_images, train_labels, test_images, test_labels, model)
evaluate_model(test_images, test_labels, model)
```
其中,数据集和标注信息可以从 GTSRB 官网下载。在训练模型时,使用 80% 的数据作为训练集,20% 的数据作为测试集。运行时间可能较长,耐心等待即可。
阅读全文