9 48 C:\Users\DELL\Desktop\未命名1.cpp [Error] in C++98 'teams' must be initialized by constructor, not by '{...}'
时间: 2023-12-12 10:51:28 浏览: 122
这个错误提示是因为你在定义一个类时,其中一个成员变量 `teams` 是一个类类型,但是你却使用了花括号 `{}` 来进行初始化。这种方式只适用于内置类型或者数组类型的初始化,对于类类型的成员变量初始化,需要使用构造函数进行初始化。
因此,你需要在类的定义中添加一个构造函数来对 `teams` 进行初始化,例如:
```
class MyClass {
private:
Team teams;
public:
MyClass() : teams(Team()) {}
};
```
这里的 `Team()` 表示使用 `Team` 类的默认构造函数来进行初始化。你也可以使用其他的构造函数来进行初始化,具体可以根据你的实际需求来选择。
相关问题
package self.cases.teams.controller; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.ExceptionHandler; import org.springframework.web.bind.annotation.ResponseBody; import self.cases.teams.utils.DateUtils; import self.cases.teams.utils.IDUtils; import self.cases.teams.msg.R; import self.cases.teams.msg.PageData; import self.cases.teams.entity.Users; import self.cases.teams.service.UsersService; /** * 系统请求响应控制器 * 系统用户 */ @Controller @RequestMapping("/users") public class UsersController extends BaseController { protected static final Logger Log = LoggerFactory.getLogger(UsersController.class); @Autowired private UsersService usersService; @RequestMapping("") public String index() { return "pages/Users"; } @GetMapping("/info") @ResponseBody public R getInfo(String id) { Log.info("查找指定系统用户,ID:{}", id); Users users = usersService.getOne(id); return R.successData(users); } @GetMapping("/page") @ResponseBody public R getPageInfos(Long pageIndex, Long pageSize, Users users) { Log.info("分页查找系统用户,当前页码:{}," + "每页数据量:{}, 模糊查询,附加参数:{}", pageIndex, pageSize, users); PageData page = usersService.getPageInfo(pageIndex, pageSize, users); return R.successData(page); } @PostMapping("/add") @ResponseBody public R addInfo(Users users) { if(usersService.getUserByUserName(users.getUserName()) == null){ users.setId(IDUtils.makeIDByCurrent()); users.setCreateTime(DateUtils.getNowDate()); Log.info("添加系统用户,传入参数:{}", users); users
,usersService.add(users); return R.successMsg("添加成功!"); }else{ return R.failMsg("用户名已存在,请重新输入!"); } } @PostMapping("/update") @ResponseBody public R updateInfo(Users users) { Log.info("更新系统用户,传入参数:{}", users); usersService.update(users); return R.successMsg("更新成功!"); } @GetMapping("/delete") @ResponseBody public R deleteInfo(String id) { Log.info("删除系统用户,ID:{}", id); usersService.delete(id); return R.successMsg("删除成功!"); } @ExceptionHandler @ResponseBody public R handleException(Exception e) { Log.error("系统用户请求异常:{}", e.getMessage()); return R.errorMsg("系统异常,请联系管理员!"); } }
请问这段代码是做什么的?
There are N sports players. Among them, there are M incompatible pairs. The i-th incompatible pair (1≤i≤M) is the A i -th and B i -th players. You will divide the players into T teams. Every player must belong to exactly one team, and every team must have one or more players. Additionally, for each i=1,2,…,M, the A i -th and B i -th players must not belong to the same team. Find the number of ways to satisfy these conditions. Here, two divisions are considered different when there are two players who belong to the same team in one division and different teams in the other.c++代码
以下是一种C++代码实现的方式:
```cpp#include <iostream>
#include <vector>
using namespace std;
int N, M, T;
vector<int> A, B;
vector<int> team;
int dfs(int idx) {
if (idx == N) {
return 1;
}
int res = 0;
for (int i = 1; i <= T; i++) {
bool valid = true;
for (int j = 0; j < M; j++) {
if ((A[j] == idx && team[B[j]] == i) || (B[j] == idx && team[A[j]] == i)) {
valid = false;
break;
}
}
if (valid) {
team[idx] = i;
res += dfs(idx + 1);
team[idx] = 0;
}
}
return res;
}
int main() {
cin >> N >> M >> T;
A.resize(M);
B.resize(M);
team.resize(N);
for (int i = 0; i < M; i++) {
cin >> A[i] >> B[i];
}
int ans = dfs(0);
cout << ans << endl;
return 0;
}
```
该代码使用深度优先搜索(DFS)的方法来枚举所有可能的分组方式,并通过检查每对不兼容的球员是否在同一队来验证分组合法性。最终输出满足条件的分组数目。
注意:这只是一种实现方式,具体解决方案可能有多种,可以根据实际情况进行适当调整。
阅读全文