请你帮我用segnet模型实现图像语义分割的全过程代码,用pytorch包,谢谢
时间: 2023-12-03 21:43:56 浏览: 143
基于segnet的语义分割
好的,以下是使用SegNet模型进行图像语义分割的全过程代码,使用PyTorch包:
首先,我们需要导入必要的包:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
```
接下来,我们需要定义一些超参数:
```python
batch_size = 16
num_epochs = 50
learning_rate = 0.001
```
然后,我们需要定义一个自定义数据集类,用于加载我们的数据集:
```python
class CustomDataset(Dataset):
def __init__(self, image_path, label_path, transform=None):
self.image_path = image_path
self.label_path = label_path
self.transform = transform
self.images = sorted(os.listdir(image_path))
self.labels = sorted(os.listdir(label_path))
def __getitem__(self, index):
image = Image.open(os.path.join(self.image_path, self.images[index]))
label = Image.open(os.path.join(self.label_path, self.labels[index]))
if self.transform:
image = self.transform(image)
label = self.transform(label)
return image, label
def __len__(self):
return len(self.images)
```
接下来,我们需要定义一个SegNet模型类:
```python
class SegNet(nn.Module):
def __init__(self):
super(SegNet, self).__init__()
# Encoder
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn5 = nn.BatchNorm2d(512)
# Decoder
self.conv6 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn6 = nn.BatchNorm2d(512)
self.conv7 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.bn7 = nn.BatchNorm2d(256)
self.conv8 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.bn8 = nn.BatchNorm2d(128)
self.conv9 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.bn9 = nn.BatchNorm2d(64)
self.conv10 = nn.Conv2d(64, 2, kernel_size=3, padding=1)
# Maxpool
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=True)
self.unpool = nn.MaxUnpool2d(kernel_size=2, stride=2)
def forward(self, x):
# Encoder
x = F.relu(self.bn1(self.conv1(x)))
x, indices1 = self.pool(x)
x = F.relu(self.bn2(self.conv2(x)))
x, indices2 = self.pool(x)
x = F.relu(self.bn3(self.conv3(x)))
x, indices3 = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x, indices4 = self.pool(x)
x = F.relu(self.bn5(self.conv5(x)))
x, indices5 = self.pool(x)
# Decoder
x = self.unpool(x, indices5)
x = F.relu(self.bn6(self.conv6(x)))
x = self.unpool(x, indices4)
x = F.relu(self.bn7(self.conv7(x)))
x = self.unpool(x, indices3)
x = F.relu(self.bn8(self.conv8(x)))
x = self.unpool(x, indices2)
x = F.relu(self.bn9(self.conv9(x)))
x = self.unpool(x, indices1)
x = self.conv10(x)
return x
```
接下来,我们需要定义一些数据增强的方法,并定义我们的训练和测试数据集:
```python
train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
train_dataset = CustomDataset(image_path='./data/train/images', label_path='./data/train/labels', transform=train_transforms)
test_dataset = CustomDataset(image_path='./data/test/images', label_path='./data/test/labels', transform=test_transforms)
```
接下来,我们需要定义我们的数据加载器:
```python
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```
然后,我们需要定义我们的优化器和损失函数:
```python
model = SegNet().cuda()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
```
最后,我们可以开始训练和测试我们的模型:
```python
for epoch in range(num_epochs):
# Train
train_loss = 0
train_correct = 0
train_total = 0
model.train()
for images, labels in train_loader:
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels[:, 0, :, :].long())
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
_, predicted = torch.max(outputs.data, 1)
train_total += labels.size(0) * labels.size(2) * labels.size(3)
train_correct += (predicted == labels[:, 0, :, :].long()).sum().item()
train_acc = 100 * train_correct / train_total
train_loss /= len(train_loader.dataset)
# Test
test_loss = 0
test_correct = 0
test_total = 0
model.eval()
with torch.no_grad():
for images, labels in test_loader:
images = images.cuda()
labels = labels.cuda()
outputs = model(images)
loss = criterion(outputs, labels[:, 0, :, :].long())
test_loss += loss.item() * images.size(0)
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0) * labels.size(2) * labels.size(3)
test_correct += (predicted == labels[:, 0, :, :].long()).sum().item()
test_acc = 100 * test_correct / test_total
test_loss /= len(test_loader.dataset)
print('Epoch: {}, Train Loss: {:.4f}, Train Acc: {:.2f}%, Test Loss: {:.4f}, Test Acc: {:.2f}%'.format(
epoch+1, train_loss, train_acc, test_loss, test_acc))
```
希望这个代码能够帮到你。
阅读全文