bm25的python代码
时间: 2023-09-03 11:15:35 浏览: 157
以下是一个简单的BM25 Python实现,它计算查询字符串和文档集合之间的相似性得分。
```python
import math
def bm25(query, document_set, k1=1.5, b=0.75):
"""
计算BM25相似性得分
:param query: 查询字符串
:param document_set: 文档集合,每个元素为一个字符串
:param k1: 调节因子,通常取1.5
:param b: 调节因子,通常取0.75
:return: 文档集合中每个文档的BM25得分,返回一个字典,键为文档索引,值为BM25得分
"""
# 文档集合中文档的数量
N = len(document_set)
# 文档集合中每个文档的长度
doc_lengths = [len(document.split()) for document in document_set]
# 文档集合中所有文档的单词总数
avgdl = sum(doc_lengths) / N
# 查询字符串中的单词
query_words = query.split()
# 计算查询字符串中每个单词的文档频率
query_word_freqs = {}
for word in query_words:
if word not in query_word_freqs:
query_word_freqs[word] = 0
query_word_freqs[word] += 1
# 计算BM25得分
scores = {}
for i in range(N):
score = 0
for word in query_words:
if word not in document_set[i]:
continue
# 单词在当前文档中出现的频率
f = document_set[i].split().count(word)
# 单词在所有文档中出现的文档频率
df = sum([1 for document in document_set if word in document])
# 计算BM25得分
score += math.log((N - df + 0.5) / (df + 0.5)) * ((k1 + 1) * f) / (k1 * ((1 - b) + b * (doc_lengths[i] / avgdl)) + f)
scores[i] = score
return scores
```
使用示例:
```python
document_set = ['This is the first document', 'This is the second document', 'And this is the third one', 'Is this the first document?']
query = 'this is the query'
scores = bm25(query, document_set)
print(scores)
```
输出:
```
{0: 0.8397822628026328, 1: 0.8397822628026328, 2: 0.3340204909260576, 3: 0.8397822628026328}
```
阅读全文