用PyQt5设计一个客户端用来显示Jetson nano用UDP通信传输过来的图片用YOLOv5模型进行检测
时间: 2024-05-01 16:18:10 浏览: 197
好的,我会尽力回答你的问题。首先,需要安装PyQt5和YOLOv5模型,可以使用pip进行安装。然后,我们需要设计一个GUI界面,用来显示图片和检测结果。这个界面可以使用PyQt5中的QWidget或者QMainWindow类进行设计。
代码示例:
```python
import sys
import numpy as np
import cv2
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel
from PyQt5.QtCore import Qt, QTimer
import socket
# 加载YOLOv5模型
net = cv2.dnn.readNet("yolov5s.pt", "yolov5s.yaml")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 创建UDP套接字并绑定端口
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(('127.0.0.1', 8888))
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
# 创建标签用来显示图像和检测结果
self.image_label = QLabel(self)
self.image_label.setAlignment(Qt.AlignCenter)
self.setCentralWidget(self.image_label)
# 创建定时器用来不断接收数据并更新界面
self.timer = QTimer(self)
self.timer.timeout.connect(self.update_image)
self.timer.start(50)
def update_image(self):
# 接收数据
data, _ = sock.recvfrom(65535)
# 解码图片
img = cv2.imdecode(np.frombuffer(data, dtype=np.uint8), cv2.IMREAD_COLOR)
# 对图片进行检测
blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * img.shape[1])
center_y = int(detection[1] * img.shape[0])
width = int(detection[2] * img.shape[1])
height = int(detection[3] * img.shape[0])
left = int(center_x - width / 2)
top = int(center_y - height / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
# 在图像上绘制检测结果
for i in range(len(boxes)):
label = f"{classes[class_ids[i]]}: {confidences[i]:.2f}"
cv2.rectangle(img, boxes[i], color=(0, 255, 0), thickness=2)
cv2.putText(img, label, (boxes[i][0], boxes[i][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color=(0, 255, 0), thickness=1)
# 将图像转换成QImage并显示在界面上
qimg = QImage(img.data, img.shape[1], img.shape[0], img.shape[1] * 3, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qimg)
self.image_label.setPixmap(pixmap)
if __name__ == '__main__':
app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())
```
这个客户端会不断接收Jetson nano发送过来的图片数据,并在界面上显示出来,同时使用YOLOv5模型进行物体检测,并将检测结果在图像上绘制出来。
阅读全文