RuntimeError: tf.placeholder() is not compatible with eager execution.
时间: 2023-04-02 19:01:48 浏览: 82
这个问题是关于 TensorFlow 的,可能是因为在启用 eager execution 的情况下使用了 tf.placeholder() 函数导致的错误。建议在使用 eager execution 时使用 tf.Variable() 或 tf.constant() 函数来代替 tf.placeholder()。
相关问题
raise RuntimeError("tf.placeholder() is not compatible with " RuntimeError: tf.placeholder() is not compatible with eager execution.
这个错误是因为在TensorFlow 2.x中启用了Eager Execution(即默认情况下启用),而`tf.placeholder`不允许在Eager Execution模式下使用。相反,您可以使用`tf.Variable`或`tf.constant`来创建张量。例如:
```
import tensorflow as tf
state_ph = tf.Variable(tf.zeros((train_params.BATCH_SIZE,) + train_params.STATE_DIMS), trainable=False)
```
或者,如果您只需要一个常量张量,则可以使用`tf.constant`,例如:
```
import tensorflow as tf
state_ph = tf.constant(0.0, shape=((train_params.BATCH_SIZE,) + train_params.STATE_DIMS))
```
请注意,在TensorFlow 2.x中,启用Eager Execution非常方便和易于调试,但在某些情况下可能会降低计算性能。
runtimeerror: tf.placeholder() is not compatible with eager execution.
这是一个 TensorFlow 的错误消息,意思是你在使用 Eager Execution 模式时使用了 tf.placeholder()。
Eager Execution 是 TensorFlow 的一种运行模式,它允许你直接在运行时计算张量,而不需要构建计算图。而 tf.placeholder() 是 TensorFlow 静态图模式中使用的占位符,它不兼容 Eager Execution 模式。
若要在 Eager Execution 模式下使用占位符,可以使用 tf.Variable() 或者 tf.constant() 代替。
如果你确实需要使用占位符来构建计算图,需要关闭 Eager Execution 模式, 使用tf.compat.v1.disable_eager_execution() 来关闭 Eager execution.
阅读全文