svm实现多分类 python
时间: 2023-08-05 09:32:57 浏览: 114
在Python中,使用Scikit-learn库可以很方便地实现SVM多分类器。下面是一个简单的示例代码:
```python
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建SVM分类器
clf = svm.SVC(kernel='linear', C=1, decision_function_shape='ovr')
# 训练模型
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 输出准确率
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
```
在这个示例中,我们使用Iris数据集进行训练和测试。首先,我们加载数据集并将其分为训练集和测试集。然后,我们创建一个SVM分类器,使用线性核函数,C=1和OVR策略来处理多分类问题。接着,我们使用训练集对模型进行训练,并使用测试集进行预测。最后,我们输出预测准确率。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://img-home.csdnimg.cn/images/20250102104920.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)