用c语言解决5乘5迷宫问题 的最短路径1为可通行的地方0为障碍

时间: 2023-11-27 10:49:02 浏览: 46
要解决这个问题,我们可以使用广度优先搜索算法(BFS)来找到从起点到终点的最短路径。下面是一个简单的C语言程序,它使用BFS算法来解决迷宫问题: ```c #include <stdio.h> #include <stdlib.h> #define ROWS 5 #define COLS 5 int maze[ROWS][COLS] = { {1, 0, 1, 1, 1}, {1, 0, 1, 0, 1}, {1, 0, 1, 0, 1}, {1, 0, 1, 0, 1}, {1, 1, 1, 0, 1} }; typedef struct { int x; int y; int distance; } Node; Node queue[ROWS*COLS]; int front = 0, rear = 0; void enqueue(Node n) { queue[rear++] = n; } Node dequeue() { return queue[front++]; } int is_empty() { return front == rear; } int is_valid(int x, int y) { if (x < 0 || y < 0 || x >= ROWS || y >= COLS) { return 0; } if (maze[x][y] == 0) { return 0; } return 1; } int bfs(int sx, int sy, int tx, int ty) { Node start = {sx, sy, 0}; enqueue(start); maze[sx][sy] = 0; while (!is_empty()) { Node current = dequeue(); if (current.x == tx && current.y == ty) { return current.distance; } Node next = {current.x + 1, current.y, current.distance + 1}; if (is_valid(next.x, next.y)) { enqueue(next); maze[next.x][next.y] = 0; } next.x = current.x - 1; next.y = current.y; if (is_valid(next.x, next.y)) { enqueue(next); maze[next.x][next.y] = 0; } next.x = current.x; next.y = current.y + 1; if (is_valid(next.x, next.y)) { enqueue(next); maze[next.x][next.y] = 0; } next.x = current.x; next.y = current.y - 1; if (is_valid(next.x, next.y)) { enqueue(next); maze[next.x][next.y] = 0; } } return -1; // no path found } int main() { int sx = 0, sy = 0; int tx = 4, ty = 4; int distance = bfs(sx, sy, tx, ty); if (distance != -1) { printf("Shortest path from (%d,%d) to (%d,%d) is %d\n", sx, sy, tx, ty, distance); } else { printf("No path found from (%d,%d) to (%d,%d)\n", sx, sy, tx, ty); } return 0; } ``` 这个程序首先定义了一个5x5的迷宫(用0表示障碍,1表示可通行的地方),然后使用BFS算法来找到从起点(0,0)到终点(4,4)的最短路径。在BFS算法中,我们将起点添加到队列中,并且将起点的值设置为0,表示已经访问过。然后我们循环处理队列中的节点,直到队列为空或者找到了终点。 在每个节点中,我们生成四个相邻节点,并将它们添加到队列中。如果一个节点是有效的(即不越界且不是障碍),我们将它的值设置为0,表示已经访问过。 最后,如果我们成功找到了终点,我们返回从起点到终点的距离。如果没有找到路径,我们返回-1。

相关推荐

最新推荐

recommend-type

C语言使用广度优先搜索算法解决迷宫问题(队列)

C语言使用广度优先搜索算法解决迷宫问题(队列) 本文主要介绍了C语言使用广度优先搜索算法解决迷宫问题的相关知识点,详细解释了C语言队列广度优先搜索算法的使用技巧和实现细节。 一、广度优先搜索算法的基本...
recommend-type

C语言求解无向图顶点之间的所有最短路径

本文主要介绍了使用C语言解决无向图顶点之间的所有最短路径问题。该问题是图论领域中的一个经典问题,解决这个问题可以帮助我们更好地理解图论的基本概念和算法思想。 在解决这个问题时,我们可以使用深度优先搜索...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。...下面这篇文章就给大家介绍关于C++用Dijkstra算法(迪杰斯特拉算法)求最短路径的方法,下面来一起看看吧。
recommend-type

C语言矩阵连乘 (动态规划)详解

矩阵连乘的动态规划方法可以将矩阵连乘问题分解成小问题,每个小问题都可以通过矩阵连乘的方式来解决,然后组合这些小问题的解决方案来得到最优的矩阵连乘顺序。 矩阵连乘的动态规划方法可以分为两个步骤:第一步是...
recommend-type

C语言压缩文件和用MD5算法校验文件完整性的实例教程

在本教程中,我们将探讨如何使用C语言进行文件压缩,并结合MD5算法验证文件的完整性。首先,我们关注的是在Windows环境下将文件压缩为7z格式。7z是一种高效的压缩格式,利用lzma(Lempel-Ziv-Markov chain Algorithm...
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。