最大似然估计高斯模型参数推理过程
时间: 2023-02-28 13:24:54 浏览: 26
最大似然估计(Maximum Likelihood Estimation,MLE)是一种在统计学中常用的估计参数的方法。在高斯模型中,我们假设数据是符合高斯分布的,那么我们可以使用 MLE 来估计模型的参数。
具体的,假设有 N 个独立的样本数据 X,每个样本数据服从高斯分布,则对于每个样本数据,它的概率密度函数是:
p(x|μ,σ^2) = (1 / (√2πσ^2)) * exp(-(x - μ)^2 / 2σ^2)
其中 μ 和 σ^2 分别是均值和方差的参数。
最大似然估计的基本思想是,假设每个样本数据是独立且同分布的,那么我们可以将所有样本数据的概率密度函数相乘,得到数据的似然函数:
L(μ,σ^2) = ∏ p(x_i|μ,σ^2)
我们希望找到一组参数 (μ,σ^2),使得似然函数 L 最大。于是我们对似然函数求导,得到导函数的最大值,然后求出该最大值对应的参数。通常我们求导得到的方程不好解,因此我们通常使用数值优化的方法来求解。
因此,在求解高斯模型参数的过程中,我们通常使用最大似然估计来计算。
阅读全文
相关推荐

















