能否生成完整的代码呢,训练数据和标签可以暂时使用torch的随机数代替
时间: 2024-04-09 10:29:05 浏览: 107
利用pytorch实现图像分类的一个完整的代码,训练,
5星 · 资源好评率100%
当然可以!以下是一个完整的示例代码,展示如何使用PyTorch实现一个简单的Transformer模型,并使用随机数据进行训练:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, num_samples, input_dim, output_dim):
self.num_samples = num_samples
self.input_dim = input_dim
self.output_dim = output_dim
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
input_data = torch.randint(0, self.input_dim, (10,))
output_data = torch.randint(0, self.output_dim, (10,))
return input_data, output_data
class Transformer(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, num_heads):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.positional_encoding = PositionalEncoding(hidden_dim)
encoder_layer = nn.TransformerEncoderLayer(hidden_dim, num_heads)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.embedding(x)
x = self.positional_encoding(x)
x = self.encoder(x)
x = self.fc(x)
return x
class PositionalEncoding(nn.Module):
def __init__(self, hidden_dim, max_length=1000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_length, hidden_dim)
position = torch.arange(0, max_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2) * -(math.log(10000.0) / hidden_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
x = x + self.pe[:, :x.size(1), :]
return x
# 设置超参数
input_dim = 100
hidden_dim = 256
output_dim = 10
num_layers = 2
num_heads = 4
batch_size = 32
num_epochs = 10
# 创建数据集和数据加载器
dataset = CustomDataset(1000, input_dim, output_dim)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 创建模型和优化器
model = Transformer(input_dim, hidden_dim, output_dim, num_layers, num_heads)
optimizer = optim.Adam(model.parameters())
# 训练模型
for epoch in range(num_epochs):
for batch_inputs, batch_targets in dataloader:
optimizer.zero_grad()
outputs = model(batch_inputs)
loss = nn.CrossEntropyLoss()(outputs.view(-1, output_dim), batch_targets.view(-1))
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}")
# 使用模型进行预测
test_input = torch.randint(0, input_dim, (1, 10))
with torch.no_grad():
test_output = model(test_input)
predicted_label = torch.argmax(test_output, dim=2)
print("Test Input:", test_input)
print("Predicted Label:", predicted_label)
```
上述代码首先定义了一个自定义数据集 `CustomDataset`,其中生成随机的输入数据和标签。然后定义了一个简单的Transformer模型 `Transformer`,包括嵌入层、位置编码层、Transformer编码器和最终的线性层。接着创建了数据加载器、模型和优化器,并进行了训练。最后使用训练好的模型进行预测。
请注意,这只是一个简单的示例,实际使用时可能需要根据具体任务进行调整和扩展。希望这可以帮到你!如果有任何其他问题,请随时提问。
阅读全文