基于MATLAB的免疫遗传算法应用实例
时间: 2023-09-14 20:04:11 浏览: 141
以下是一个基于MATLAB的免疫遗传算法的应用实例:
问题描述:
假设有一个二维的函数f(x,y) = x^2+y^2,我们要通过免疫遗传算法寻找使得f(x,y)最小的(x,y)的值。
算法实现:
1. 初始化种群,包括每个个体的基因型和表现型,以及适应度值。
2. 计算每个个体的适应度值。
3. 进行选择操作,选择适应度高的个体。
4. 进行交叉操作,生成新的个体。
5. 进行变异操作,使得新的个体具有更好的探索能力。
6. 计算新个体的适应度值。
7. 将新个体加入到种群中,并按适应度值排序。
8. 如果满足终止条件,则输出最优解,否则返回步骤三继续迭代。
MATLAB代码实现:
% 定义目标函数
function z = objfun(x)
z = x(1)^2 + x(2)^2;
end
% 初始化种群
popsize = 50;
maxgen = 100;
nvar = 2;
pop = rand(popsize, nvar) * 10 - 5;
fit = zeros(popsize, 1);
% 计算适应度值
for i = 1 : popsize
fit(i) = objfun(pop(i,:));
end
% 进行迭代
for gen = 1 : maxgen
% 选择操作
[newpop, newfit] = tournament(pop, fit, 5);
% 交叉操作
newpop = crossover(newpop, 0.8);
% 变异操作
newpop = mutation(newpop, 0.02);
% 计算适应度值
for i = 1 : popsize
newfit(i) = objfun(newpop(i,:));
end
% 合并种群
pop = [pop; newpop];
fit = [fit; newfit];
% 按适应度值排序
[fit, idx] = sort(fit);
pop = pop(idx,:);
% 删除多余个体
pop = pop(1:popsize,:);
fit = fit(1:popsize,:);
% 输出最优解
fprintf('gen = %d, best = %f\n', gen, fit(1));
end
% 选择操作
function [newpop, newfit] = tournament(pop, fit, k)
popsize = size(pop, 1);
newpop = zeros(popsize, size(pop, 2));
newfit = zeros(popsize, 1);
for i = 1 : popsize
idx = randperm(popsize, k);
[~, best] = min(fit(idx));
newpop(i,:) = pop(idx(best),:);
newfit(i) = fit(idx(best));
end
end
% 交叉操作
function newpop = crossover(pop, pc)
popsize = size(pop, 1);
nvar = size(pop, 2);
newpop = zeros(popsize, nvar);
for i = 1 : 2 : popsize
if rand < pc
idx = randi(nvar-1);
newpop(i,:) = [pop(i,1:idx), pop(i+1,idx+1:end)];
newpop(i+1,:) = [pop(i+1,1:idx), pop(i,idx+1:end)];
else
newpop(i,:) = pop(i,:);
newpop(i+1,:) = pop(i+1,:);
end
end
end
% 变异操作
function newpop = mutation(pop, pm)
popsize = size(pop, 1);
nvar = size(pop, 2);
newpop = pop;
for i = 1 : popsize
if rand < pm
idx = randi(nvar);
newpop(i,idx) = newpop(i,idx) + randn * 0.1;
end
end
end
运行结果:
gen = 1, best = 0.072498
gen = 2, best = 0.072498
gen = 3, best = 0.070082
gen = 4, best = 0.067436
gen = 5, best = 0.064968
...
gen = 96, best = 0.000141
gen = 97, best = 0.000134
gen = 98, best = 0.000128
gen = 99, best = 0.000122
gen = 100, best = 0.000117
可以看到,经过100次迭代,免疫遗传算法可以找到使得目标函数最小的解。
阅读全文