import torch import matplotlib.pyplot as plt x_data=torch.Tensor([[1.0],[2.0],[3.0]]) y_data=torch.Tensor([[2.0],[4.0],[6.0]]) list1=[] list2=[] class LinearModel(torch.nn.Module): def init(self): super(LinearModel,self).init() self.linear=torch.nn.Linear(1,1) def forward(self,x): y_pred=self.linear(x) return y_pred model = LinearModel() criterion = torch.nn.MSELoss(size_average=False) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(100): y_pred=model(x_data) loss=criterion(y_pred,y_data) print(epoch,loss.item()) list1.append(loss.item()) list2.append(epoch) optimizer.zero_grad() loss.backward() optimizer.step() print('w=',model.linear.weight.item()) print('b=',model.linear.bias.item()) fig=plt.figure() ax=fig.add_subplot(111) ax.set(title='Adagrad',ylabel='loss',xlabel='time') ax.plot(list1,list2) x_test=torch.Tensor([[4.0]]) y_test=model(x_test) print('y_pred=',y_test.data) plt.show()给我具体讲一讲这个代码
时间: 2024-03-07 21:51:52 浏览: 52
这是一个使用PyTorch实现的简单线性回归模型。代码主要分为以下几个部分:
1. 导入必要的库:代码导入了PyTorch和matplotlib库。
2. 准备数据:定义了输入数据x_data和对应的输出数据y_data。在这个例子中,x_data和y_data是一组简单线性关系的数据,即y_data是x_data的两倍。
3. 定义模型:定义了一个继承自torch.nn.Module的线性模型LinearModel。该模型包含一个线性层self.linear,输入为1,输出为1。模型的forward函数用于计算模型的输出y_pred。
4. 定义损失函数和优化器:定义了损失函数criterion和优化器optimizer,其中损失函数使用的是均方误差(MSE)损失函数,优化器使用的是随机梯度下降(SGD)优化器。
5. 训练模型:使用循环进行模型训练。循环100次,每次循环都计算出当前的预测值y_pred和损失loss,并将损失值和循环次数分别存入list1和list2中。然后,使用优化器进行反向传播和权重更新。
6. 输出模型参数:输出模型的权重和偏置。
7. 绘制损失曲线:使用matplotlib库绘制损失随时间的变化曲线。
8. 测试模型:使用训练好的模型进行一次测试,并输出预测值。
在这个例子中,模型的训练数据比较简单,但是可以通过修改输入数据和调整模型超参数来适应更复杂的模型训练任务。
相关问题
人工构造的数据集如下: import torch import matplotlib.pyplot as plt n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) 请用python从0实现logistic回归(只借助Tensor和Numpy相关的库)
要使用 Python 从零实现逻辑回归,只借助 Tensor 和 NumPy 相关的库,可以按照以下步骤进行操作:
1. 导入所需的库:
```python
import numpy as np
import torch
```
2. 准备数据:
```python
n_data = torch.ones(50, 2)
x1 = torch.normal(2 * n_data, 1)
y1 = torch.zeros(50)
x2 = torch.normal(-2 * n_data, 1)
y2 = torch.ones(50)
x = torch.cat((x1, x2), 0).type(torch.FloatTensor)
y = torch.cat((y1, y2), 0).type(torch.FloatTensor)
```
3. 定义模型参数:
```python
w = torch.randn(2, 1, requires_grad=True) # 权重参数
b = torch.zeros(1, requires_grad=True) # 偏置参数
```
4. 定义模型和损失函数:
```python
def logistic_regression(x):
return torch.sigmoid(torch.mm(x, w) + b)
def cross_entropy(y_pred, y):
return -torch.mean(y * torch.log(y_pred) + (1 - y) * torch.log(1 - y_pred))
```
5. 定义优化器和训练模型:
```python
lr = 0.01 # 学习率
num_epochs = 1000 # 迭代次数
for epoch in range(num_epochs):
# 前向传播
y_pred = logistic_regression(x)
loss = cross_entropy(y_pred, y)
# 反向传播和优化
loss.backward() # 计算梯度
with torch.no_grad():
w -= lr * w.grad # 更新权重参数
b -= lr * b.grad # 更新偏置参数
w.grad.zero_() # 清零梯度
b.grad.zero_() # 清零梯度
if (epoch+1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
6. 使用模型进行预测:
```python
with torch.no_grad():
y_pred = logistic_regression(x)
predicted = (y_pred >= 0.5).float()
print('Predicted:', predicted)
```
7. 可视化结果:
```python
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=predicted.numpy().flatten(), s=100, lw=0, cmap='RdYlGn')
plt.show()
```
这样就完成了从零实现逻辑回归的过程。请注意,这里使用了 PyTorch 的自动求导功能来计算梯度,并且使用了 NumPy 进行数据可视化。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文