class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence2 = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence2 = sequence1 + self.sequence2 self.model = nn.Sequential(*sequence2) nn.LeakyReLU(0.2, True) return self.model(input),上述代码中出现错误:RuntimeError: Expected weight_c.size(1) * n_weight_grps == input_c.size(1) to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.),请问如何解决,给出修改后的代码

时间: 2023-08-21 07:06:26 浏览: 52
这个错误通常是由于在使用分组卷积时,输入通道数和卷积核数量不匹配引起的。根据错误提示,可以得知是在一次卷积中出现了此问题。根据代码,可以看出是在使用`torchvision.ops.deform_conv2d`函数时出现了此问题。 解决方法是检查输入通道数和卷积核数量是否匹配,如果不匹配,则需要对它们进行调整。 下面是修改后的代码: ``` class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 self.sequence2 = nn.ModuleList() for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) self.sequence2.extend([ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ]) nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) self.sequence2.extend([ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ]) if use_sigmoid: self.sequence2.append(nn.Sigmoid()) def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1))] sequence2 = sequence1 + self.sequence2 for i, layer in enumerate(sequence2): sequence2[i] = layer(sequence2[i-1]) return sequence2[-1] ``` 修改的主要内容如下: 1. 将`self.sequence2`改为`nn.ModuleList()`类型,这样可以方便地添加和修改网络结构; 2. 在循环中使用`extend`方法添加卷积层,避免在循环中使用`+=`操作符引起的错误; 3. 在`forward`函数中,使用循环遍历`sequence2`中的每一层,并将其输入和输出连接起来。 希望这样的修改能够帮助到你。

相关推荐

如何将self.conv1 = nn.Conv2d(4 * num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(512, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 512, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(512, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 512, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 与torchvision.ops.deform_conv2d,加入到:class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): return self.model(input)中,请给出修改后的代码

可以将self.conv1、self.conv_offset1和self.conv_mask1加入到NLayerDiscriminator中的nn.Sequential序列中,如下所示: import torchvision from torchvision.ops.deform_conv import DeformConv2d class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ DeformConv2d( ndf * nf_mult_prev, ndf * nf_mult, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False ), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) self.conv1 = nn.Conv2d(4 * ndf, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) def forward(self, input): x = input for module in self.model: if isinstance(module, DeformConv2d): offset_mask = torch.cat([self.conv_offset1(x), self.conv_mask1(x)], dim=1) x = module(x, offset_mask) else: x = module(x) return x 这里使用了torchvision.ops.deform_conv2d中的DeformConv2d作为最后一层卷积层,因此需要将self.conv1、self.conv_offset1和self.conv_mask1的通道数修改为ndf。在forward中,对于DeformConv2d层,需要将self.conv_offset1和self.conv_mask1的输出拼接起来作为offset_mask输入。

Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence2 = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) 上述代码中出现错误:RuntimeError: Expected weight_c.size(1) * n_weight_grps == input_c.size(1) to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.),请问如何解决,给出修改后的代码

这个错误通常是由于卷积层的通道数和输入数据的通道数不匹配导致的。根据错误信息可以看出,这个错误是在第 49 行的 deform_conv2d 函数中出现的。根据代码,这个函数是使用可变形卷积进行特征提取的,因此需要注意卷积层的通道数和输入数据的通道数是否匹配。具体来说,需要检查卷积层的输入通道数和权重矩阵的通道数是否匹配。 下面是修改后的代码,主要是修改了可变形卷积的输入参数,确保通道数匹配: python class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 self.sequence2 = [] for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d( input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=1, stride=1, dilation=1 ) ] for layer in self.sequence2: sequence1.append(layer(sequence1[-1])) return sequence1[-1] 需要注意的是,由于 deform_conv2d 函数的输入参数有很多,需要根据实际情况进行调整。

class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence2 = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence2 = sequence1 + self.sequence2 self.model = nn.Sequential(*sequence2) nn.LeakyReLU(0.2, True) return self.model(input),上述代码中:出现错误:torchvision.ops.deform_conv2d(input=input, offset=offset1,RuntimeError: Expected weight_c.size(1) * n_weight_grps == input_c.size(1) to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.)

这个错误是由于输入的通道数和权重的通道数不匹配导致的。在这段代码中,使用了deformable convolution操作,该操作需要使用偏移量和掩码对输入进行卷积,其中偏移量和掩码都是通过卷积层生成的。在这个模型中,第一个卷积层的输出通道数为ndf,而第一个偏移量卷积层的输出通道数为18,第一个掩码卷积层的输出通道数为9。因此,当使用deformable convolution对输入进行卷积时,需要使用第一个卷积层的权重,偏移量和掩码,但是由于通道数不匹配,导致出现了上述错误。 要解决这个问题,可以修改偏移量和掩码卷积层的输出通道数,使其与第一个卷积层的输出通道数相同。具体来说,可以将偏移量卷积层的输出通道数修改为ndf*2,掩码卷积层的输出通道数修改为ndf。同时,需要相应地修改初始化偏移量和掩码的代码。修改后的代码如下: class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, ndf*2, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([ndf*2, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, ndf, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([ndf, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) self.sequence2 = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1[:, :18, :, :], weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence2 = sequence1 + self.sequence2 self.model = nn.Sequential(*sequence2) nn.LeakyReLU(0.2, True) return self.model(input)
这个错误是由于conv_offset1和conv_mask1的输入通道数与conv1的输出通道数不匹配所引起的。你可以尝试修改conv_offset1和conv_mask1的输入通道数以匹配conv1的输出通道数,或者将conv1的输出通道数修改为匹配conv_offset1和conv_mask1的输入通道数。你可以使用print语句检查conv1的输出通道数和conv_offset1、conv_mask1的输入通道数是否匹配。 根据报错信息,可以看到输入的张量input的shape为[1, 64, 512, 512],而conv_offset1和conv_mask1的输入通道数为512,但conv1的输出通道数为ndf,即64。因此,你需要将conv_offset1和conv_mask1的输入通道数修改为ndf,即64。修改后的代码如下: def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence2 = sequence1 + self.sequence2 self.model = nn.Sequential(*sequence2) nn.LeakyReLU(0.2, True) return self.model(input)
这个错误提示是在运行 Conv1d 时出现的。根据提示,可以看出是输入数据的通道数与卷积核的通道数不匹配导致的。 具体来说,这里的错误提示是: Given groups=1, weight of size [64, 121, 4], expected input[1, 64, 121] to have 121 channels, but got 64 channels instead 其中,weight of size [64, 121, 4] 表示卷积核的形状为 [64, 121, 4],即有 64 个卷积核,每个卷积核的形状为 (121, 4);expected input[1, 64, 121] to have 121 channels 表示期望输入数据的通道数为 121;but got 64 channels instead 表示实际输入数据的通道数为 64,与期望值不一致。 根据代码,可以发现这个错误是在 Discriminator 类中的第一个卷积层中出现的,输入数据的形状为 (batch_size, 64, 121),卷积核的形状为 (ndf, nc, 4),期望输入数据的通道数为 nc=121,但实际输入数据的通道数为 64。 解决这个问题的方法是,需要将输入数据的通道数修改为 nc=121,可以通过在输入数据前增加一个维度,并将这个维度的大小设置为 nc 来实现。具体来说,可以将输入数据的形状修改为 (batch_size, nc, 64)。修改后的代码如下: # 定义判别器 class Discriminator(nn.Module): def __init__(self, ndf=64, nc=121): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv1d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv1d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm1d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv1d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm1d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv1d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm1d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv1d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): input = input.view(input.size(0), -1, 64) return self.main(input)
以下是一个简单的 Self-Attention GAN 的代码,包括数据载入、模型、训练和测试代码。 首先,我们需要导入必要的库: python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.utils.data import DataLoader 接下来,我们需要定义一些超参数: python batch_size = 128 image_size = 64 nz = 100 ngf = 64 ndf = 64 num_epochs = 5 lr = 0.0002 beta1 = 0.5 ngpu = 1 然后,我们需要定义数据载入器: python dataset = datasets.ImageFolder(root='data', transform=transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) 接下来,我们需要定义生成器和判别器: python class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(3, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input) 接下来,我们需要初始化生成器和判别器: python device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") netG = Generator().to(device) netD = Discriminator().to(device) if (device.type == 'cuda') and (ngpu > 1): netG = nn.DataParallel(netG, list(range(ngpu))) netD = nn.DataParallel(netD, list(range(ngpu))) 然后,我们需要定义损失函数和优化器: python criterion = nn.BCELoss() fixed_noise = torch.randn(64, nz, 1, 1, device=device) real_label = 1 fake_label = 0 optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) 最后,我们可以开始训练模型: python for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): netD.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, device=device) output = netD(real_cpu).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() netG.zero_grad() label.fill_(real_label) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) if (epoch == 0) and (i == 0): torchvision.utils.save_image(real_cpu, 'real_samples.png', normalize=True) if i == len(dataloader) - 1: with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() torchvision.utils.save_image(fake, 'fake_samples_epoch_%03d.png' % epoch, normalize=True) 测试代码: python import matplotlib.pyplot as plt import numpy as np def show_generated_img_all(): n_images=5 rows = 1 cols = 5 noise = torch.randn(n_images, nz, 1, 1).to(device) fake_images = netG(noise) fig, axes = plt.subplots(rows, cols, figsize=(15,5)) for i in range(rows): for j in range(cols): idx = i*cols+j axes[j].imshow(np.transpose(fake_images[idx].detach().cpu().numpy(), (1,2,0))) axes[j].axis('off') plt.show() show_generated_img_all() 以上就是一个简单的 Self-Attention GAN 的代码。其中,数据载入器可以根据自己的数据集进行修改,超参数也可以根据需要进行调整。
这里是一个使用PyTorch实现的DCGAN和DenseNet的图像分类代码示例: DCGAN代码示例: python import torch import torch.nn as nn # 定义生成器 Generator class Generator(nn.Module): def __init__(self, nz, ngf, nc): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) # 定义判别器 Discriminator class Discriminator(nn.Module): def __init__(self, nc, ndf): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input).view(-1, 1).squeeze(1) # 定义训练过程 def train(netG, netD, dataloader, criterion, optimizerG, optimizerD, device, nz, ngf, ndf, epochs): for epoch in range(epochs): for i, data in enumerate(dataloader, 0): # 训练判别器 netD.zero_grad() real_imgs = data[0].to(device) b_size = real_imgs.size(0) label = torch.full((b_size,), 1, dtype=torch.float, device=device) output = netD(real_imgs).view(-1) errD_real = criterion(output, label) noise = torch.randn(b_size, nz, 1, 1, device=device) fake_imgs = netG(noise) label.fill_(0) output = netD(fake_imgs.detach()).view(-1) errD_fake = criterion(output, label) errD = errD_real + errD_fake errD.backward() optimizerD.step() # 训练生成器 netG.zero_grad() label.fill_(1) output = netD(fake_imgs).view(-1) errG = criterion(output, label) errG.backward() optimizerG.step() # 输出训练状态 print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, epochs, i, len(dataloader), errD.item(), errG.item())) # 定义超参 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") nz = 100 ngf = 64 ndf = 64 epochs = 5 lr = 0.0002 beta1 = 0.5 batch_size = 128 image_size = 64 nc = 3 # 加载数据集 dataset = torchvision.datasets.CIFAR10(root='./data', download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(image_size), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) # 初始化网络 netG = Generator(nz, ngf, nc).to(device) netD = Discriminator(nc, ndf).to(device) criterion = nn.BCELoss() optimizerG = torch.optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerD = torch.optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) # 训练网络 train(netG, netD, dataloader, criterion, optimizerG, optimizerD, device, nz, ngf, ndf, epochs) DenseNet代码示例: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义DenseNet模型 class DenseNet(nn.Module): def __init__(self): super(DenseNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Sequential(*self._make_dense_layers(64, 12)), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 128, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.AvgPool2d(kernel_size=8, stride=1), ) self.classifier = nn.Linear(128, 10) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def _make_dense_layers(self, in_channels, num_blocks): layers = [] for i in range(num_blocks): layers.append(Bottleneck(in_channels)) in_channels += 32 return layers # 定义Bottleneck模块 class Bottleneck(nn.Module): def __init__(self, in_channels): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 32, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(32) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = nn.ReLU(inplace=True)(out) out = self.conv2(out) out = self.bn2(out) out = nn.ReLU(inplace=True)(out) out = torch.cat((x, out), 1) return out # 训练模型 def train(net, trainloader, criterion, optimizer, device, epochs): for epoch in range(epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 # 定义超参 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") epochs = 10 lr = 0.1 momentum = 0.9 batch_size = 128 image_size = 32 # 加载数据集 transform_train = transforms.Compose([ transforms.RandomCrop(image_size, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) # 初始化网络 net = DenseNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) # 训练网络 train(net, trainloader, criterion, optimizer, device, epochs) 这里的代码示例可以用来训练和测试CIFAR-10数据集的分类任务。注意要根据数据集的要求调整模型的输入和输出大小。
好的,以下是基于PyTorch的DCGAN生成器的代码,可以根据11x11的灰度图来生成更多的11x11灰度图来扩充数据集: python import torch import torch.nn as nn import torch.optim as optim from torchvision.utils import save_image import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader from PIL import Image import os # 定义生成器(Generator)和判别器(Discriminator) class Generator(nn.Module): def __init__(self, nz=100, ngf=64, nc=1): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self, ndf=64, nc=1): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input).view(-1, 1) # 定义训练函数 def train(dataloader, generator, discriminator, optimizer_G, optimizer_D, device, epochs, save_interval): # 定义损失函数 criterion = nn.BCELoss() # 训练过程 for epoch in range(epochs): for i, data in enumerate(dataloader, 0): real_imgs = data[0].to(device) batch_size = real_imgs.size(0) # 训练判别器(Discriminator) optimizer_D.zero_grad() # 准备真实样本 real_label = torch.full((batch_size,), 1, dtype=torch.float, device=device) # 计算真实样本的损失 output = discriminator(real_imgs).view(-1) errD_real = criterion(output, real_label) # 生成假样本 noise = torch.randn(batch_size, 100, 1, 1, device=device) fake_imgs = generator(noise) # 准备假样本 fake_label = torch.full((batch_size,), 0, dtype=torch.float, device=device) # 计算假样本的损失 output = discriminator(fake_imgs.detach()).view(-1) errD_fake = criterion(output, fake_label) # 计算判别器的总损失 errD = errD_real + errD_fake # 反向传播更新判别器 errD.backward() optimizer_D.step() # 训练生成器(Generator) optimizer_G.zero_grad() fake_label.fill_(1) # 重新计算假样本的损失,此处不修改判别器的参数 output = discriminator(fake_imgs).view(-1) errG = criterion(output, fake_label) # 反向传播更新生成器 errG.backward() optimizer_G.step() # 输出训练结果 if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f' % (epoch, epochs, i, len(dataloader), errD.item(), errG.item())) # 保存生成器的输出 batches_done = epoch * len(dataloader) + i if batches_done % save_interval == 0: save_image(fake_imgs.data[:25], 'output/%d.png' % batches_done, nrow=5, normalize=True) # 定义数据类(Data Class) class ImageDataset(Dataset): def __init__(self, root, transform=None): self.transform = transform self.image_paths = [os.path.join(root, x) for x in os.listdir(root)] def __getitem__(self, index): image_path = self.image_paths[index] image = Image.open(image_path).convert('L') if self.transform is not None: image = self.transform(image) return image def __len__(self): return len(self.image_paths) # 设置一些超参数 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") batch_size = 64 lr = 0.0002 betas = (0.5, 0.999) epochs = 50 nz = 100 ngf = 64 ndf = 64 nc = 1 save_interval = 500 # 加载数据集 transform = transforms.Compose([ transforms.Resize(11), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) dataset = ImageDataset(root='data_folder_path', transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) # 实例化生成器和判别器,并将它们移到设备上 generator = Generator(nz=nz, ngf=ngf, nc=nc).to(device) discriminator = Discriminator(ndf=ndf, nc=nc).to(device) # 定义优化器 optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=betas) optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=betas) # 训练模型 train(dataloader, generator, discriminator, optimizer_G, optimizer_D, device, epochs, save_interval) 其中,'data_folder_path'需要替换为存放11x11灰度图的文件夹的路径。训练完成后,生成的11x11灰度图将保存在output文件夹下。
以下是一个基于GAN的深度图像重建算法的Python代码示例,使用的是PyTorch框架: python import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import torchvision.transforms as transforms import torchvision.datasets as dset from torchvision.utils import save_image import os # 定义超参数 batch_size = 128 lr = 0.0002 train_epoch = 100 beta1 = 0.5 nz = 100 ngf = 64 ndf = 64 # 定义Generator模型 class generator(nn.Module): def __init__(self): super(generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): output = self.main(input) return output # 定义Discriminator模型 class discriminator(nn.Module): def __init__(self): super(discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(3, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): output = self.main(input) return output.view(-1, 1) # 初始化模型和优化器 G = generator() D = discriminator() G.cuda() D.cuda() G.apply(weights_init) D.apply(weights_init) criterion = nn.BCELoss() optimizerD = optim.Adam(D.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(G.parameters(), lr=lr, betas=(beta1, 0.999)) # 定义训练过程 for epoch in range(train_epoch): for i, data in enumerate(dataloader, 0): real_cpu, _ = data batch_size = real_cpu.size(0) input = Variable(real_cpu.cuda()) target = Variable(torch.ones(batch_size).cuda()) noise = Variable(torch.randn(batch_size, nz, 1, 1).cuda()) fake = G(noise) target_fake = Variable(torch.zeros(batch_size).cuda()) # 训练Discriminator D.zero_grad() output = D(input) errD_real = criterion(output, target) errD_real.backward() output_fake = D(fake.detach()) errD_fake = criterion(output_fake, target_fake) errD_fake.backward() errD = errD_real + errD_fake optimizerD.step() # 训练Generator G.zero_grad() output_fake = D(fake) errG = criterion(output_fake, target) errG.backward() optimizerG.step() # 保存生成的图像 fake = G(fixed_noise) save_image(fake.data, 'output/fake_samples_epoch_%03d.png' % epoch, normalize=True) # 保存模型 torch.save(G.state_dict(), 'generator.pth') torch.save(D.state_dict(), 'discriminator.pth')
以下是一个简单的 ACGAN 生成对抗网络训练 Pytorch 代码,可以生成指定数字的手写数字图片: python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from torch.autograd import Variable import numpy as np # 定义生成器和判别器的网络结构 class Generator(nn.Module): def __init__(self, nz, ngf, nc, num_classes): super(Generator, self).__init__() self.num_classes = num_classes self.fc = nn.Sequential( nn.Linear(nz + num_classes, 1024), nn.BatchNorm1d(1024), nn.ReLU(True), nn.Linear(1024, 7 * 7 * 128), nn.BatchNorm1d(7 * 7 * 128), nn.ReLU(True), ) self.conv = nn.Sequential( nn.ConvTranspose2d(128, 64, 4, 2, 1), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, nc, 4, 2, 1), nn.Tanh(), ) def forward(self, z, labels): c = np.zeros((z.shape[0], self.num_classes)) c[range(z.shape[0]), labels] = 1 c = torch.from_numpy(c).float() if z.is_cuda: c = c.cuda() z = torch.cat([z, c], 1) out = self.fc(z) out = out.view(out.size(0), 128, 7, 7) out = self.conv(out) return out class Discriminator(nn.Module): def __init__(self, ndf, nc, num_classes): super(Discriminator, self).__init__() self.num_classes = num_classes self.conv = nn.Sequential( nn.Conv2d(nc, 64, 4, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), ) self.fc = nn.Sequential( nn.Linear(128 * 7 * 7 + num_classes, 1024), nn.BatchNorm1d(1024), nn.LeakyReLU(0.2, inplace=True), nn.Linear(1024, 1), nn.Sigmoid(), ) def forward(self, x, labels): out = self.conv(x) out = out.view(out.size(0), -1) c = np.zeros((out.shape[0], self.num_classes)) c[range(out.shape[0]), labels] = 1 c = torch.from_numpy(c).float() if x.is_cuda: c = c.cuda() out = torch.cat([out, c], 1) out = self.fc(out) return out # 定义训练函数 def train(dataloader, discriminator, generator, optimizer_d, optimizer_g, criterion, num_epochs, nz, num_classes): for epoch in range(num_epochs): for i, (images, labels) in enumerate(dataloader): batch_size = images.size(0) images = Variable(images) labels = Variable(labels) real_labels = Variable(torch.ones(batch_size)) fake_labels = Variable(torch.zeros(batch_size)) if images.is_cuda: real_labels = real_labels.cuda() fake_labels = fake_labels.cuda() labels = labels.cuda() images = images.cuda() # 训练判别器 optimizer_d.zero_grad() outputs = discriminator(images, labels) real_loss = criterion(outputs, real_labels) real_loss.backward() z = Variable(torch.randn(batch_size, nz)) if z.is_cuda: z = z.cuda() fake_labels_ = Variable(torch.LongTensor(np.random.randint(0, num_classes, batch_size))) if fake_labels_.is_cuda: fake_labels_ = fake_labels_.cuda() fake_images = generator(z, fake_labels_) outputs = discriminator(fake_images, fake_labels_) fake_loss = criterion(outputs, fake_labels) fake_loss.backward() optimizer_d.step() # 训练生成器 optimizer_g.zero_grad() z = Variable(torch.randn(batch_size, nz)) if z.is_cuda: z = z.cuda() fake_labels_ = Variable(torch.LongTensor(np.random.randint(0, num_classes, batch_size))) if fake_labels_.is_cuda: fake_labels_ = fake_labels_.cuda() fake_images = generator(z, fake_labels_) outputs = discriminator(fake_images, fake_labels_) g_loss = criterion(outputs, real_labels) g_loss.backward() optimizer_g.step() # 打印训练信息 if (i + 1) % 100 == 0: print('Epoch [%d/%d], Step [%d/%d], d_loss: %.4f, g_loss: %.4f' % (epoch + 1, num_epochs, i + 1, len(dataloader), (real_loss + fake_loss).data[0], g_loss.data[0])) # 定义超参数 batch_size = 128 num_epochs = 200 nz = 100 ngf = 64 ndf = 64 nc = 1 num_classes = 10 lr = 0.0002 beta1 = 0.5 # 加载 MNIST 数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 初始化生成器和判别器 generator = Generator(nz, ngf, nc, num_classes) discriminator = Discriminator(ndf, nc, num_classes) if torch.cuda.is_available(): generator.cuda() discriminator.cuda() # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer_g = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_d = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999)) # 训练模型 train(train_dataloader, discriminator, generator, optimizer_d, optimizer_g, criterion, num_epochs, nz, num_classes) 这个代码可以生成指定数字的手写数字图片,你可以通过修改 fake_labels_ 的值来指定要生成的数字。
GAN算法的实现需要使用深度学习框架,如TensorFlow、PyTorch等。以下是一个使用PyTorch实现GAN生成手写数字图片的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils # 定义生成器 class Generator(nn.Module): def __init__(self, ngpu): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.ConvTranspose2d(100, 64 * 4, 4, 1, 0, bias=False), nn.BatchNorm2d(64 * 4), nn.ReLU(True), nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 2), nn.ReLU(True), nn.ConvTranspose2d(64 * 2, 64, 4, 2, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(True), nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) # 定义判别器 class Discriminator(nn.Module): def __init__(self, ngpu): super(Discriminator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.Conv2d(1, 64, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 64 * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64 * 2, 64 * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(64 * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64 * 4, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input) # 定义超参数 batch_size = 128 image_size = 64 nc = 1 ngf = 64 ndf = 64 nz = 100 num_epochs = 100 lr = 0.0002 beta1 = 0.5 ngpu = 1 # 加载手写数字数据集 dataset = dset.MNIST(root='./data', download=True, transform=transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) # 定义生成器、判别器和优化器 netG = Generator(ngpu).cuda() netD = Discriminator(ngpu).cuda() criterion = nn.BCELoss() optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) # 训练GAN for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 更新判别器 netD.zero_grad() real = data[0].cuda() batch_size = real.size(0) label = torch.full((batch_size,), 1, device='cuda') output = netD(real).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(batch_size, nz, 1, 1, device='cuda') fake = netG(noise) label.fill_(0) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() # 更新生成器 netG.zero_grad() label.fill_(1) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() # 输出训练状态 if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) if epoch == 0 and i == 0: vutils.save_image(real, '%s/real_samples.png' % "./results", normalize=True) if i % 100 == 0: vutils.save_image(fake.detach(), '%s/fake_samples_epoch_%03d_iterations_%03d.png' % ("./results", epoch, i), normalize=True) 这段代码实现了一个生成手写数字图片的GAN模型,其中包括一个生成器和一个判别器。在训练过程中,首先更新判别器,然后更新生成器,最后输出训练状态和生成的图片。
以下是一个简单的基于PyTorch的GAN模型代码示例: python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from tqdm import tqdm # 定义生成器模型 class Generator(nn.Module): def __init__(self, nz=100, ngf=64, nc=3): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf*8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf*8), nn.ReLU(True), nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf*4), nn.ReLU(True), nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf*2), nn.ReLU(True), nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, x): return self.main(x) # 定义判别器模型 class Discriminator(nn.Module): def __init__(self, ndf=64, nc=3): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf*2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf*2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf*2, ndf*4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf*4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf*4, ndf*8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf*8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf*8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, x): return self.main(x).view(-1, 1) # 定义训练函数 def train(dataloader, generator, discriminator, optimizer_g, optimizer_d, criterion, device): for epoch in range(num_epochs): for i, data in enumerate(tqdm(dataloader)): real_images = data[0].to(device) batch_size = real_images.size(0) # 训练判别器 optimizer_d.zero_grad() # 训练判别器鉴别真实图像 label_real = torch.full((batch_size,), 1, device=device) output_real = discriminator(real_images) loss_d_real = criterion(output_real, label_real) loss_d_real.backward() # 训练判别器鉴别生成图像 noise = torch.randn(batch_size, nz, 1, 1, device=device) fake_images = generator(noise) label_fake = torch.full((batch_size,), 0, device=device) output_fake = discriminator(fake_images.detach()) loss_d_fake = criterion(output_fake, label_fake) loss_d_fake.backward() # 总判别器损失 loss_d = loss_d_real + loss_d_fake optimizer_d.step() # 训练生成器 optimizer_g.zero_grad() # 训练生成器欺骗判别器 label_real = torch.full((batch_size,), 1, device=device) output_fake = discriminator(fake_images) loss_g = criterion(output_fake, label_real) loss_g.backward() optimizer_g.step() # 每个epoch结束后输出loss和生成的图像 print(f"Epoch {epoch+1}/{num_epochs}, Loss_D: {loss_d.item()}, Loss_G: {loss_g.item()}") fake_images = generator(fixed_noise) save_image(fake_images.detach().cpu(), f"gan_images/epoch_{epoch+1}.png", normalize=True) # 设置超参数 num_epochs = 200 batch_size = 64 lr = 0.0002 beta1 = 0.5 nz = 100 ngf = 64 ndf = 64 nc = 3 # 加载数据集 transform = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) dataset = datasets.ImageFolder("data/", transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) # 初始化生成器和判别器 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") generator = Generator(nz=nz, ngf=ngf, nc=nc).to(device) discriminator = Discriminator(ndf=ndf, nc=nc).to(device) # 设置优化器和损失函数 optimizer_g = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_d = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999)) criterion = nn.BCELoss() # 固定生成器输入噪声,用于输出生成的图像 fixed_noise = torch.randn(64, nz, 1, 1, device=device) # 训练模型 train(dataloader, generator, discriminator, optimizer_g, optimizer_d, criterion, device) 以上代码演示了如何使用PyTorch实现一个简单的DCGAN。在训练过程中,我们使用交替优化的方式训练生成器和判别器,其中生成器的目标是欺骗判别器,而判别器的目标是尽可能地区分真实图像和生成图像。
以下是使用CGAN生成cifar10图片的代码和步骤: 1.首先,我们需要导入必要的库和模块,包括PyTorch、torchvision、numpy等。 python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.utils.data import DataLoader import numpy as np 2.接下来,我们需要定义一些超参数,例如图像大小、噪声向量大小、学习率等。 python # 超参数 batch_size = 128 image_size = 64 nz = 100 nc = 3 ngf = 64 ndf = 64 num_epochs = 50 lr = 0.0002 beta1 = 0.5 ngpu = 1 3.然后,我们需要下载并加载cifar10数据集。 python # 加载数据集 dataset = dset.CIFAR10(root='./data', download=True, transform=transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) 4.接下来,我们需要定义生成器和判别器的结构。 python # 定义生成器 class Generator(nn.Module): def __init__(self, ngpu): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # 输入是一个nz维度的噪声,我们可以认为它是一个1*1*nz的feature map nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # 上一步的输出形状:(ngf*8) x 4 x 4 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), # 上一步的输出形状:(ngf*4) x 8 x 8 nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), # 上一步的输出形状:(ngf*2) x 16 x 16 nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), # 上一步的输出形状:(ngf) x 32 x 32 nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() # 输出形状:(nc) x 64 x 64 ) def forward(self, input): return self.main(input) # 定义判别器 class Discriminator(nn.Module): def __init__(self, ngpu): super(Discriminator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # 输入形状 (nc) x 64 x 64 nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # 输出形状 (ndf) x 32 x 32 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # 输出形状 (ndf*2) x 16 x 16 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # 输出形状 (ndf*4) x 8 x 8 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # 输出形状 (ndf*8) x 4 x 4 nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() # 输出形状 1 x 1 x 1 ) def forward(self, input): return self.main(input) 5.接下来,我们需要定义损失函数和优化器。 python # 定义损失函数和优化器 netG = Generator(ngpu).cuda() netD = Discriminator(ngpu).cuda() criterion = nn.BCELoss() fixed_noise = torch.randn(64, nz, 1, 1, device='cuda') real_label = 1 fake_label = 0 optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) 6.最后,我们可以开始训练模型了。 python # 训练模型 for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 更新判别器 netD.zero_grad() real_cpu = data[0].cuda() b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, device='cuda') output = netD(real_cpu).view(-1) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device='cuda') fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()).view(-1) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() # 更新生成器 netG.zero_grad() label.fill_(real_label) output = netD(fake).view(-1) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() # 输出训练状态 if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) # 保存生成器的输出结果 if (epoch == 0) and (i == 0): vutils.save_image(real_cpu, '%s/real_samples.png' % "./results", normalize=True) if i % 100 == 0: fake = netG(fixed_noise) vutils.save_image(fake.detach(), '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize=True)
好的,下面是pytorch实现GAN的步骤: 1.导入必要的库 python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.utils.data import DataLoader import os import numpy as np import torchvision.utils as vutils 2.定义生成器和鉴别器 python class Generator(nn.Module): def __init__(self, ngf, nz, nc): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self, ndf, nc): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input).view(-1, 1).squeeze(1) 3.定义超参数 python # 超参数 batch_size = 64 image_size = 64 nz = 100 ngf = 64 ndf = 64 num_epochs = 50 lr = 0.0002 beta1 = 0.5 ngpu = 1 4.准备数据集 python # 图像处理 transform = transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 数据集 dataset = dset.ImageFolder(root='./data', transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) 5.定义优化器和损失函数 python # 设备 device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") # 初始化生成器和鉴别器 netG = Generator(ngf, nz, 3).to(device) netD = Discriminator(ndf, 3).to(device) # 初始化权重 netG.apply(weights_init) netD.apply(weights_init) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) 6.训练模型 python # 真实标签 real_label = 1. # 假标签 fake_label = 0. # 训练 for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 判别器的训练 netD.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, device=device) output = netD(real_cpu) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() # 生成器的训练 netG.zero_grad() label.fill_(real_label) output = netD(fake) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() # 输出训练状态 if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) # 保存生成器的输出 if (epoch == 0) and (i == 0): vutils.save_image(real_cpu, '%s/real_samples.png' % "./results", normalize=True) if i % 100 == 0: with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() vutils.save_image(fake, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize=True) 以上就是pytorch实现GAN的步骤,其中还包括了权重的初始化、训练状态的输出、保存生成器的输出等。这里只是一个简单的示例,实际使用时还需要根据具体问题进行相应的调整和优化。
DreamBooth 是一个基于深度学习的图像生成模型,可以用于生成逼真的人脸图像。其训练步骤和详细代码如下: 1. 数据集准备 首先需要准备一个人脸图像数据集,可以使用公开的数据集,如CelebA、LFW等。将数据集中的人脸图像进行预处理,如裁剪、缩放等处理,使其大小和质量一致。 2. 构建模型 DreamBooth 使用了DCGAN(Deep Convolutional Generative Adversarial Networks)作为模型基础,通过对生成器和判别器进行修改和调整,使其能够更好地生成逼真的人脸图像。具体的模型结构和超参数可以参考以下代码: python import torch.nn as nn import torch.nn.functional as F class Generator(nn.Module): def __init__(self, ngf, nz, nc): super(Generator, self).__init__() self.fc1 = nn.Linear(nz, ngf * 8 * 4 * 4) self.conv1 = nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1) self.conv2 = nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1) self.conv3 = nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1) self.conv4 = nn.ConvTranspose2d(ngf, nc, 4, 2, 1) def forward(self, x): x = self.fc1(x) x = x.view(-1, 512, 4, 4) x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = torch.tanh(self.conv4(x)) return x class Discriminator(nn.Module): def __init__(self, ndf, nc): super(Discriminator, self).__init__() self.conv1 = nn.Conv2d(nc, ndf, 4, 2, 1) self.conv2 = nn.Conv2d(ndf, ndf * 2, 4, 2, 1) self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1) self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1) self.fc1 = nn.Linear(ndf * 8 * 4 * 4, 1) def forward(self, x): x = F.leaky_relu(self.conv1(x), 0.2, inplace=True) x = F.leaky_relu(self.conv2(x), 0.2, inplace=True) x = F.leaky_relu(self.conv3(x), 0.2, inplace=True) x = F.leaky_relu(self.conv4(x), 0.2, inplace=True) x = x.view(-1, 8192) x = self.fc1(x) return x 3. 训练模型 使用PyTorch框架进行训练,具体代码如下: python import torch import torchvision.transforms as transforms import torchvision.datasets as dset from torch.utils.data import DataLoader from torch.autograd import Variable def train(opt): # 数据集准备 transform = transforms.Compose([ transforms.CenterCrop(opt.image_size), transforms.Resize(opt.image_size), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) dataset = dset.ImageFolder(root=opt.dataroot, transform=transform) dataloader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers) # 模型构建 G = Generator(opt.ngf, opt.nz, opt.nc) D = Discriminator(opt.ndf, opt.nc) G.cuda() D.cuda() # 损失函数和优化器 criterion = nn.BCEWithLogitsLoss() optimizerG = torch.optim.Adam(G.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizerD = torch.optim.Adam(D.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) # 训练过程 for epoch in range(opt.num_epochs): for i, data in enumerate(dataloader, 0): real, _ = data batch_size = real.size(0) real = Variable(real.cuda()) label = Variable(torch.ones(batch_size).cuda()) noise = Variable(torch.randn(batch_size, opt.nz).cuda()) # 训练生成器 optimizerG.zero_grad() fake = G(noise) output = D(fake) lossG = criterion(output, label) lossG.backward() optimizerG.step() # 训练判别器 optimizerD.zero_grad() output = D(real) lossD_real = criterion(output, label) lossD_real.backward() fake = G(noise).detach() output = D(fake) label.fill_(0) lossD_fake = criterion(output, label) lossD_fake.backward() lossD = lossD_real + lossD_fake optimizerD.step() # 输出损失值 if i % 100 == 0: print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, opt.num_epochs, i, len(dataloader), lossD.item(), lossG.item())) # 保存模型 torch.save(G.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch)) torch.save(D.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch)) 4. 生成图像 训练完成后,可以使用训练好的模型生成图像。具体代码如下: python import torch from PIL import Image # 加载模型 G = Generator(ngf=64, nz=100, nc=3) G.load_state_dict(torch.load('path_to_model')) # 生成图像 noise = torch.randn(1, 100) img = G(noise).cpu().detach().squeeze() img = (img + 1) / 2.0 # 去归一化 img = transforms.ToPILImage()(img) img.show() 以上就是DreamBooth的训练步骤和详细代码。需要注意的是,训练时间可能比较长,可以考虑使用GPU加速训练过程。

最新推荐

torch_cluster-1.6.0-cp38-cp38-win_amd64.whl.zip

需要配和指定版本torch-1.10.1+cpu使用,请在安装该模块前提前安装torch-1.10.1+cpu,无需安装cuda

获取的肯德基第一页源代码

获取的肯德基第一页源代码

C语言程序来实现打印沙漏

打印沙漏c语言pta

哈希排序等相关算法知识

哈希排序等相关算法知识

混合神经编码调制的设计和训练方法

可在www.sciencedirect.com在线获取ScienceDirectICTExpress 8(2022)25www.elsevier.com/locate/icte混合神经编码调制:设计和训练方法Sung Hoon Lima,Jiyong Hana,Wonjong Noha,Yujae Songb,Sang-WoonJeonc,a大韩民国春川,翰林大学软件学院b韩国龟尾国立技术学院计算机软件工程系,邮编39177c大韩民国安山汉阳大学电子电气工程系接收日期:2021年9月30日;接收日期:2021年12月31日;接受日期:2022年1月30日2022年2月9日在线发布摘要提出了一种由内码和外码组成的混合编码调制方案。外码可以是任何标准的二进制具有有效软解码能力的线性码(例如,低密度奇偶校验(LDPC)码)。内部代码使用深度神经网络(DNN)设计,该深度神经网络获取信道编码比特并输出调制符号。为了训练DNN,我们建议使用损失函数,它是受广义互信息的启发。所得到的星座图被示出优于具有5G标准LDPC码的调制�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

帮我用C++和Qt写一个m*n的矩阵最小路径和可视化,要求用格子展示,最小路径采用其它的颜色标记

好的,以下是一个基本的实现: 1. 首先需要定义一个矩阵类来存储矩阵数据和计算最小路径和。 ```c++ class Matrix{ public: Matrix(int rows, int cols); ~Matrix(); void setValue(int i, int j, int value); //设置元素的值 int getValue(int i, int j); //获取元素的值 int getRows(); //获取行数 int getCols(); //获取列数 int getMinPathSum(); //获取最

基于android的视频播放器的设计与实现--大学毕业论文.doc

基于android的视频播放器的设计与实现--大学毕业论文.doc

"基于自定义RC-NN的优化云计算网络入侵检测"

⃝可在www.sciencedirect.com在线获取ScienceDirectICTExpress 7(2021)512www.elsevier.com/locate/icte基于自定义RC-NN和优化的云计算网络入侵检测T.蒂拉加姆河ArunaVelTech Rangarajan博士Sagunthala研发科学技术研究所,印度泰米尔纳德邦钦奈接收日期:2020年8月20日;接收日期:2020年10月12日;接受日期:2021年4月20日2021年5月5日网上发售摘要入侵检测是保证信息安全的重要手段,其关键技术是对各种攻击进行准确分类。入侵检测系统(IDS)被认为是云网络环境中的一个重要安全问题。在本文中,IDS给出了一个创新的优化定制的RC-NN(递归卷积神经网络),提出了入侵检测与蚁狮优化算法的基础上。通过这种方法,CNN(卷积神经网络)与LSTM(长短期记忆)混合。因此,利用云的网络层识别的所有攻击被有效地分类。下面所示的实验结果描述了具有高精度的IDS分类模型的呈现,从而�

Shell脚本中的并发编程和多线程操作

# 一、引言 ## 1.1 介绍Shell脚本中并发编程和多线程操作的概念与意义 在Shell编程中,并发编程和多线程操作是指同时执行多个任务或操作,这在处理大规模数据和提高程序执行效率方面非常重要。通过并发编程和多线程操作,可以实现任务的同时执行,充分利用计算资源,加快程序运行速度。在Shell脚本中,也可以利用并发编程和多线程操作来实现类似的效果,提高脚本的执行效率。 ## 1.2 探讨并发编程和多线程在IT领域的应用场景 在IT领域,并发编程和多线程操作被广泛应用于各种场景,包括但不限于: - Web服务器中处理并发请求 - 数据库操作中的并发访问和事务处理 - 大数据处理和分析