请帮我评估一下,我一共有9000行训练数据,代码如下:def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.fc4 = nn.Linear(24, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = nn.functional.relu(x) x = self.fc4(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=1) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv')
时间: 2023-12-24 17:25:24 浏览: 137
根据你提供的代码,我认为你的模型可能存在一些问题。具体来说:
1. 数据处理部分:你的代码中首先对数据进行了透视操作,然后将数据分成了x_train和y_train两部分。x_train中只包含了前三列数据,而y_train中只包含了最后一列数据。这样处理可能会导致信息的丢失,因为你只考虑了一部分特征。建议你重新考虑数据的处理方式,确保包含了所有重要的特征。
2. 模型设计部分:你的模型是一个四层的神经网络,其中包含了多个线性层和激活函数。然而,你的模型可能过于简单,无法捕捉到数据的复杂性。建议你增加模型的宽度和深度,或者使用更加复杂的神经网络结构,以提高模型的表现。
3. 训练部分:你使用了MSE损失函数和SGD优化器来训练模型。这些选择可能是合理的,但是你的代码中没有对模型进行交叉验证或者其他的调参操作,这可能导致模型过拟合或欠拟合。建议你使用交叉验证或者其他的评估方法,以便更好地评估模型的性能。
综上所述,我建议你重新考虑数据处理、模型设计和训练的方式,以提高模型的表现。
相关问题
# 导入数据集 def import_csv_data(): global file_path, df, txt_data file_path = filedialog.askopenfilename() df = pd.read_csv(file_path) df = df.fillna(0) top_5 = df.head() txt_data.delete('1.0', tk.END) txt_data.insert(tk.END, top_5) # 处理缺失值 def handle_missing_values(): global file_path # 读取CSV文件 data = pd.read_csv(file_path) # 处理缺失值 data.fillna(0, inplace=True) # 显示前10行数据 text_output.insert(tk.END, "处理缺失值成功,前10行数据如下:\n") text_output.insert(tk.END, str(data.head(10))) # 标准化数值型数据 def normalize_numeric_data(): global file_path # 读取CSV文件 data = pd.read_csv(file_path) # 提取数值型数据 numeric_data = data.select_dtypes(include=['float64', 'int64']) # 标准化数据 scaler = StandardScaler() normalized_data = scaler.fit_transform(numeric_data) # 将处理后的数据写回原数据框 data.loc[:, numeric_data.columns] = normalized_data # 显示前10行数据 text_output.insert(tk.END, "标准化数值型数据成功,前10行数据如下:\n") text_output.insert(tk.END, str(data.head(10))) # 划分训练集和测试集 def split_train_test(): global file_path, train_ratio # 读取CSV文件 data = pd.read_csv(file_path) # 划分数据集 train, test = train_test_split(data, train_size=train_ratio) # 显示训练集和测试集大小 text_output.insert(tk.END, "训练集大小:{}\n".format(len(train))) text_output.insert(tk.END, "测试集大小:{}\n".format(len(test)))续写代码实现“模型下拉菜单,可选择相应模型,选择后,对相应模型进行训练,测试”的功能
在原有代码的基础上,可以添加一个下拉菜单组件,用于选择机器学习模型,以及相应的训练和测试函数。具体代码如下:
```
# 导入机器学习模型库
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
# 创建下拉菜单组件,用于选择机器学习模型
model_var = tk.StringVar(root)
model_options = ["线性回归", "决策树", "随机森林"]
model_var.set(model_options[0])
model_menu = tk.OptionMenu(root, model_var, *model_options)
model_menu.pack()
# 创建训练和测试函数
def train_linear_regression():
global df, train_ratio
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], train_size=train_ratio)
# 训练线性回归模型
model = LinearRegression()
model.fit(x_train, y_train)
# 测试模型
score = model.score(x_test, y_test)
# 显示模型评分
text_output.insert(tk.END, "线性回归模型测试评分:{:.2f}\n".format(score))
def train_decision_tree():
global df, train_ratio
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], train_size=train_ratio)
# 训练决策树模型
model = DecisionTreeRegressor()
model.fit(x_train, y_train)
# 测试模型
score = model.score(x_test, y_test)
# 显示模型评分
text_output.insert(tk.END, "决策树模型测试评分:{:.2f}\n".format(score))
def train_random_forest():
global df, train_ratio
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(df.iloc[:, :-1], df.iloc[:, -1], train_size=train_ratio)
# 训练随机森林模型
model = RandomForestRegressor()
model.fit(x_train, y_train)
# 测试模型
score = model.score(x_test, y_test)
# 显示模型评分
text_output.insert(tk.END, "随机森林模型测试评分:{:.2f}\n".format(score))
# 创建训练和测试按钮
train_button = tk.Button(root, text="训练和测试", command=train_selected_model)
train_button.pack()
# 创建训练和测试函数
def train_selected_model():
global model_var
selected_model = model_var.get()
if selected_model == "线性回归":
train_linear_regression()
elif selected_model == "决策树":
train_decision_tree()
elif selected_model == "随机森林":
train_random_forest()
```
在这段代码中,我们首先创建了一个下拉菜单组件,并提供了三个机器学习模型供选择。然后,我们创建了三个训练和测试函数,分别对应线性回归、决策树和随机森林模型。最后,我们创建了一个按钮,用于触发训练和测试函数。在按钮的回调函数中,我们获取了下拉菜单中选择的模型,并根据选择的模型调用相应的训练和测试函数。
def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.dropout=nn.Dropout(0.5) self.fc4 = nn.Linear(24, 48) self.fc5 = nn.Linear(48, 96) self.fc6 = nn.Linear(96, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.dropout(x) x = nn.functional.relu(x) x = self.fc4(x) x = nn.functional.relu(x) x = self.fc5(x) x = nn.functional.relu(x) x = self.fc6(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=0.05) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv') 如果我想要使用学习率调度器应该怎么操作
如果您想使用学习率调度器,可以先创建一个学习率调度器对象,例如StepLR或ReduceLROnPlateau,然后在每个epoch或一定的步骤之后,通过调用学习率调度器对象的step方法来更新优化器的学习率。例如,对于StepLR,可以按照以下方式操作:
```
# 创建学习率调度器对象
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
for epoch in range(1,50):
# 预测值
y_pred=model(x_train)
# 损失值
loss=loss_fn(y_pred,y_train)
# 反向传播
optimizer.zero_grad()
loss.backward()
# 更新学习率
scheduler.step()
optimizer.step()
print('epoch',epoch,'loss',loss)
```
在这个例子中,我们使用StepLR来每10个epoch将学习率乘以0.1。您可以根据需要自定义step_size和gamma值。