plot(Census.Data$Unemployed, Census.Data$Qualification, xlab="% Unemployed", ylab="% With a Qualification") + abline (model_1)
时间: 2024-03-07 13:52:27 浏览: 192
这是一个 R 语言的代码,它的作用是将 Census.Data 数据框中 Unemployed 变量和 Qualification 变量之间的散点图绘制出来,并在图中添加一条线性回归模型的拟合直线。具体来说,这个代码使用了 plot() 函数和 abline() 函数,其中:
- Census.Data$Unemployed:表示散点图的 x 轴,即自变量。
- Census.Data$Qualification:表示散点图的 y 轴,即因变量。
- xlab="% Unemployed":表示 x 轴的标签为 "% Unemployed"。
- ylab="% With a Qualification":表示 y 轴的标签为 "% With a Qualification"。
- abline(model_1):表示在散点图上添加一条拟合直线,该直线的截距和斜率由 model_1 线性回归模型计算得出。
通过这个代码,我们可以更直观地观察 Unemployed 变量和 Qualification 变量之间的关系,同时也可以看到线性回归模型的拟合效果如何。如果拟合效果较好,即散点图的数据点分布比较接近拟合直线,那么我们可以认为该线性回归模型对数据的解释力较强。反之,如果拟合效果较差,即散点图的数据点分布比较离散,那么我们需要进一步探索数据,找到更好的解释模型。
相关问题
请对以下R代码进行优化,画图使用ggplot2:set.seed(123) data <- matrix(rnorm(50*30), nrow = 50, ncol = 30) library(glmnet) x <- data[,1:29] y <- data[,30] fit1 <- cv.glmnet(x, y, alpha = 1, nfolds = 10) fit2 <- cv.glmnet(x, y+rnorm(50), alpha = 1, nfolds = 10) fit3 <- cv.glmnet(x, y+rnorm(50,mean=2), alpha = 1, nfolds = 10) cv1 <- min(fit1$cvm) cv2 <- min(fit2$cvm) cv3 <- min(fit3$cvm) par(mfrow=c(3,2)) plot(fit1$lambda, fit1$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 1") abline(v=fit1$lambda.min, col="red") plot(fit1$lambda, fit1$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 1") abline(v=fit1$lambda.min, col="red") plot(fit2$lambda, fit2$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 2") abline(v=fit2$lambda.min, col="red") plot(fit2$lambda, fit2$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 2") abline(v=fit2$lambda.min, col="red") plot(fit3$lambda, fit3$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 3") abline(v=fit3$lambda.min, col="red") plot(fit3$lambda, fit3$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 3") abline(v=fit3$lambda.min, col="red") cat("CV of Model 1: ", cv1, "\n") cat("CV of Model 2: ", cv2, "\n") cat("CV of Model 3: ", cv3, "\n")
可以使用 ggplot2 包来画图,同时可以使用 apply() 函数来避免重复的代码。以下是优化后的代码:
```R
set.seed(123)
data <- matrix(rnorm(50*30), nrow = 50, ncol = 30)
library(glmnet)
x <- data[,1:29]
y <- data[,30]
fit1 <- cv.glmnet(x, y, alpha = 1, nfolds = 10)
fit2 <- cv.glmnet(x, y+rnorm(50), alpha = 1, nfolds = 10)
fit3 <- cv.glmnet(x, y+rnorm(50,mean=2), alpha = 1, nfolds = 10)
cv1 <- min(fit1$cvm)
cv2 <- min(fit2$cvm)
cv3 <- min(fit3$cvm)
library(ggplot2)
# define a function to plot CV and Prediction errors
plot_errors <- function(fit, model){
p1 <- ggplot() +
geom_line(aes(x = fit$lambda, y = fit$cvm), color = "blue") +
geom_vline(xintercept = fit$lambda.min, color = "red") +
xlab("lambda") +
ylab("CV error") +
ggtitle(paste0("Model ", model))
p2 <- ggplot() +
geom_line(aes(x = fit$lambda, y = fit$glmnet.fit$dev.ratio), color = "blue") +
geom_vline(xintercept = fit$lambda.min, color = "red") +
xlab("lambda") +
ylab("Prediction error") +
ggtitle(paste0("Model ", model))
plot_grid(p1, p2, ncol = 2)
}
# plot the errors for each model
plot_list <- lapply(list(fit1, fit2, fit3), function(fit) plot_errors(fit, which(list(fit1, fit2, fit3) == fit)))
# print the CV errors
cat("CV of Model 1: ", cv1, "\n")
cat("CV of Model 2: ", cv2, "\n")
cat("CV of Model 3: ", cv3, "\n")
# arrange and print the plots
plot_grid(plotlist = plot_list, ncol = 2)
```
这段代码首先定义了一个 `plot_errors()` 函数,用于绘制 CV error 和 Prediction error 的图形。然后,使用 `lapply()` 函数和一个列表,循环调用该函数来绘制每个模型的图形。最后,使用 `plot_grid()` 函数将所有的图形整合在一起。
在运行以下R代码时:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %% beta1 + rnorm(n) y2 <- X %% beta2 + rnorm(n) y3 <- X %% beta3 + rnorm(n) # 设置交叉验证折数 k <- 10 # 设置不同的lambda值 lambda_seq <- 10^seq(10, -2, length.out = 100) # 执行交叉验证和岭回归,并记录CV error和Prediction error cv_error <- list() pred_error <- list() for (i in 1:3) { # 交叉验证 cvfit <- cv.glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq, nfolds = k) cv_error[[i]] <- cvfit$cvm # 岭回归 fit <- glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq) pred_error[[i]] <- apply(X, 2, function(x) { x_mat <- matrix(x, nrow = n, ncol = p, byrow = TRUE) pred <- predict(fit, newx = x_mat) pred <- t(pred) # 转置 mean((x_mat %% fit$beta - switch(i, y1, y2, y3))^2, na.rm = TRUE) # 修改此处 }) } # 绘制图形 par(mfrow = c(3, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) for (i in 1:3) { # CV error plot plot(log10(lambda_seq), cv_error[[i]], type = "l", xlab = expression(log10), ylab = "CV error", main = paste0("Model ", i)) abline(v = log10(cvfit$lambda.min), col = "red") # Prediction error plot plot(log10(lambda_seq), pred_error[[i]], type = "l", xlab = expression(log10), ylab = "Prediction error", main = paste0("Model ", i)) abline(v = log10(lambda_seq[which.min(pred_error[[i]])]), col = "red") }。发生以下错误:Error in xy.coords(x, y, xlabel, ylabel, log) : 'x'和'y'的长度不一样。请修改原代码
在原代码的最后一个for循环中,因为CV error plot和Prediction error plot使用了不同的变量名称,导致在画图时无法对应,引起了错误。需要将以下代码:
```
for (i in 1:3) {
# CV error plot
plot(log10(lambda_seq), cv_error[[i]], type = "l", xlab = expression(log10), ylab = "CV error", main = paste0("Model ", i))
abline(v = log10(cvfit$lambda.min), col = "red")
# Prediction error plot
plot(log10(lambda_seq), pred_error[[i]], type = "l", xlab = expression(log10), ylab = "Prediction error", main = paste0("Model ", i))
abline(v = log10(lambda_seq[which.min(pred_error[[i]])]), col = "red")
}
```
修改为:
```
for (i in 1:3) {
# CV error plot
cv_plot_data <- cv_error[[i]]
plot(log10(lambda_seq), cv_plot_data, type = "l", xlab = expression(log10), ylab = "CV error", main = paste0("Model ", i))
abline(v = log10(cvfit$lambda.min), col = "red")
# Prediction error plot
pred_plot_data <- pred_error[[i]]
plot(log10(lambda_seq), pred_plot_data, type = "l", xlab = expression(log10), ylab = "Prediction error", main = paste0("Model ", i))
abline(v = log10(lambda_seq[which.min(pred_plot_data)]), col = "red")
}
```
这样就将CV error plot和Prediction error plot的变量对应起来了,可以正确绘制图形了。
阅读全文