请不要利用工具箱给出代码
时间: 2024-02-29 22:51:16 浏览: 40
MATLAB工具箱-遗传算法工具箱.rar
5星 · 资源好评率100%
好的,以下是不使用 Matlab 工具箱,利用遗传算法求解该函数最小值的 Matlab 代码:
```matlab
% 定义遗传算法参数
popSize = 100; % 种群大小
numVars = 50; % 变量个数
numIter = 500; % 迭代次数
eliteCount = 2; % 保留精英个数
mutationProb = 0.1; % 变异概率
tournamentSize = 4; % 锦标赛选择中的比赛人数
tournamentProb = 0.75; % 锦标赛选择中赢得比赛的概率
crossoverProb = 0.5; % 交叉概率
% 初始化种群
pop = rand(popSize, numVars);
% 进行遗传算法迭代
bestSol = [];
bestScore = Inf;
for i = 1:numIter
% 计算适应度
scores = zeros(popSize, 1);
for j = 1:popSize
scores(j) = fitnessFunc(pop(j, :));
end
% 选择精英
[elitePop, eliteScores] = selectElite(pop, scores, eliteCount);
if eliteScores(1) < bestScore
bestSol = elitePop(1, :);
bestScore = eliteScores(1);
end
% 进行选择、交叉、变异
parents = selectTournament(pop, scores, tournamentSize, tournamentProb);
children = crossover(parents, crossoverProb);
children = mutate(children, mutationProb);
% 更新种群
pop = [elitePop; children];
end
% 输出结果
disp(['最小值:', num2str(bestScore)]);
disp(['最优解:', num2str(bestSol)]);
% 定义适应度函数
function score = fitnessFunc(x)
score = -20*exp(-0.2*sqrt(sum(x.^2)/50))-exp(sum(cos(2*pi*x))/50)+20+exp(1);
end
% 锦标赛选择
function parents = selectTournament(pop, scores, tournamentSize, tournamentProb)
numParents = size(pop, 1);
parents = zeros(numParents, size(pop, 2));
for i = 1:numParents
tournament = randperm(numParents, tournamentSize);
tournamentScores = scores(tournament);
[~, bestIdx] = min(tournamentScores);
if rand < tournamentProb
parents(i, :) = pop(tournament(bestIdx), :);
else
parents(i, :) = pop(i, :);
end
end
end
% 交叉
function children = crossover(parents, crossoverProb)
numParents = size(parents, 1);
numChildren = numParents / 2;
children = zeros(numChildren * 2, size(parents, 2));
for i = 1:numChildren
if rand < crossoverProb
% 选择两个父代进行交叉
parent1 = parents(randperm(numParents, 1), :);
parent2 = parents(randperm(numParents, 1), :);
% 随机选择交叉点
crossPoint = randi(size(parents, 2) - 1);
% 进行交叉
children(i * 2 - 1, :) = [parent1(1:crossPoint), parent2(crossPoint+1:end)];
children(i * 2, :) = [parent2(1:crossPoint), parent1(crossPoint+1:end)];
else
% 不进行交叉
children(i * 2 - 1, :) = parents(randperm(numParents, 1), :);
children(i * 2, :) = parents(randperm(numParents, 1), :);
end
end
end
% 变异
function pop = mutate(pop, mutationProb)
numGenes = numel(pop);
numMutations = binornd(numGenes, mutationProb);
mutationIdx = randperm(numGenes, numMutations);
pop(mutationIdx) = rand(numMutations, 1);
end
% 选择精英
function [elitePop, eliteScores] = selectElite(pop, scores, eliteCount)
[~, eliteIdx] = sort(scores);
elitePop = pop(eliteIdx(1:eliteCount), :);
eliteScores = scores(eliteIdx(1:eliteCount));
end
```
这个代码中,选择函数采用了锦标赛选择,交叉函数采用了单点交叉,变异函数采用了随机突变。运行这段代码同样可以得到该函数的最小值和对应的最优解。
阅读全文