def capture_packet(self, netcard, filters): stop_capturing_thread.clear() # 第一个参数可以传入文件对象或者文件名字 writer = PcapWriter(self.temp_file, append=True, sync=True) thread = Thread(target=self.flow_count, daemon=True, args=(netcard, )) thread.start() # sniff中的store=False 表示不保存在内存中,防止内存使用过高 sniff( iface=netcard, #指定要捕获的网络接口。 prn=(lambda x: self.process_packet(x, writer)), filter=filters, #指定过滤条件 stop_filter=(lambda x: stop_capturing_thread.is_set()), #停止捕获的条件,线程中设置了stop_event事件才会停止 store=False) #不将捕获的数据包存储在内存中 # 执行完成关闭writer writer.close()

时间: 2024-04-28 15:22:18 浏览: 19
这段代码使用了Scapy来捕获网络数据包,并使用了WinPcap来底层实现数据包的抓取和保存。具体来说: - 首先,代码创建了一个PcapWriter对象,用于将捕获到的数据包写入到PCAP文件中。PcapWriter对象使用了WinPcap库来实现数据包的写入和保存。 - 然后,代码启动了一个线程,用于统计流量信息。 - 接着,代码调用了Scapy的sniff函数来进行数据包的捕获。在这个过程中,Scapy使用了WinPcap来底层实现数据包的捕获和过滤。 - 在捕获到每个数据包时,代码调用了process_packet函数来处理数据包,并将数据包写入到PCAP文件中。 - 最后,当停止捕获的条件满足时,代码关闭了PcapWriter对象,停止了数据包的写入和保存。 总之,这段代码使用了Scapy和WinPcap来实现了对网络数据包的捕获和保存,并且使用了多线程来实现数据包的处理和流量统计。
相关问题

def capture_packet(self, netcard, filters): stop_capturing_thread.clear() # 第一个参数可以传入文件对象或者文件名字 writer = PcapWriter(self.temp_file, append=True, sync=True) thread = Thread(target=self.flow_count, daemon=True, args=(netcard, )) thread.start() # sniff中的store=False 表示不保存在内存中,防止内存使用过高 sniff( iface=netcard, prn=(lambda x: self.process_packet(x, writer)), filter=filters, stop_filter=(lambda x: stop_capturing_thread.is_set()), store=False) # 执行完成关闭writer writer.close()

这段代码实现了使用 Scapy 库对网络数据包进行抓取和处理。 具体来说,它使用了 Scapy 的 `sniff()` 函数来抓取网络数据包,并将每个数据包传递给 `process_packet()` 函数进行处理。`process_packet()` 函数的实现需要根据具体的需求来进行编写。 在抓取数据包的过程中,可以根据 `filters` 参数指定需要抓取的数据包类型或者其他条件。如果需要停止抓包,可以调用 `stop_capturing_thread.set()` 方法。 同时,为了避免内存使用过高,`sniff()` 函数的 `store` 参数被设置为 `False`,表示不将抓取到的数据包保存在内存中。 最终,抓取到的数据包会被写入一个 Pcap 文件,文件名由 `temp_file` 参数指定。可以使用 Wireshark 等工具来打开这个文件进行分析。 `flow_count()` 函数是另一个线程中的函数,用于统计网络流量等信息。

用c++语言来写出下面这段代码class MAC: def __init__(self, address): self.address = address self.buffer = [] self.transmitting = False self.transmit_time = 0 self.backoff_time = 0 def transmit(self, packet): if self.transmitting: self.buffer.append(packet) else: self.transmitting = True self.transmit_time = 10 self.send_packet(packet) def send_packet(self, packet): # 发送数据包 self.transmit_time -= 1 if self.transmit_time == 0: self.transmitting = False self.check_buffer() def check_buffer(self): if len(self.buffer) > 0: packet = self.buffer.pop(0) self.transmit(packet) else: self.backoff_time = 10 def handle_backoff(self): if self.backoff_time > 0: self.backoff_time -= 1 else: self.check_buffer() class SMAC: def __init__(self, nodes): self.nodes = nodes self.time = 0 def run(self): while True: self.time += 1 for node in self.nodes: if node.transmitting: node.send_packet(None) elif node.backoff_time > 0: node.handle_backoff() else: # 随机发送数据包 if random.randint(0, 100) < 10: packet = Packet(node.address, random.choice(self.nodes).address) node.transmit(packet)

下面是C++语言的代码实现: class MAC { private: int address; vector<Packet> buffer; bool transmitting; int transmit_time; int backoff_time; public: MAC(int address) { this->address = address; this->transmitting = false; this->transmit_time = 0; this->backoff_time = 0; } void transmit(Packet packet) { if (transmitting) { buffer.push_back(packet); } else { transmitting = true; transmit_time = 10; send_packet(packet); } } void send_packet(Packet packet) { // 发送数据包 transmit_time -= 1; if (transmit_time == 0) { transmitting = false; check_buffer(); } } void check_buffer() { if (buffer.size() > 0) { Packet packet = buffer.front(); buffer.erase(buffer.begin()); transmit(packet); } else { backoff_time = 10; } } void handle_backoff() { if (backoff_time > 0) { backoff_time -= 1; } else { check_buffer(); } } }; class SMAC { private: vector<MAC> nodes; int time; public: SMAC(vector<MAC> nodes) { this->nodes = nodes; this->time = 0; } void run() { while (true) { time += 1; for (int i = 0; i < nodes.size(); i++) { MAC node = nodes[i]; if (node.transmitting) { node.send_packet(Packet()); } else if (node.backoff_time > 0) { node.handle_backoff(); } else { // 随机发送数据包 if (rand() % 100 < 10) { Packet packet(node.address, nodes[rand() % nodes.size()].address); node.transmit(packet); } } } } } };

相关推荐

最新推荐

recommend-type

如何修改mysql数据库的max_allowed_packet参数

本篇文章是对修改mysql数据库的max_allowed_packet参数进行了详细的分析介绍,需要的朋友参考下
recommend-type

mysql read_buffer_size 设置多少合适

MySQL中的`read_buffer_size`是一个重要的服务器配置参数,它直接影响到数据库在处理顺序扫描查询时的性能。这个参数定义了当MySQL执行顺序读取操作,例如从磁盘读取数据文件时,用于缓冲数据的内存大小。合适的设置...
recommend-type

packet_tracer5[1].0全攻略

Packet Tracer 5.0 是一个强大的网络设计和模拟工具,尤其适合初学者学习局域网的构建和网络设备操作。这个软件由思科开发,提供了直观的图形化界面,让用户能够轻松添加、配置和连接各种网络设备,包括交换机、...
recommend-type

mysql服务性能优化—my.cnf_my.ini配置说明详解(16G内存)

MySQL服务性能优化主要依赖于配置文件my.cnf或my.ini的有效设定,特别是在内存充足的环境下,如16GB内存,合理的配置能显著提升数据库的处理能力。以下是对my.cnf配置文件中关键参数的详细解释: 1. `[client]`部分...
recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。