用c++写个决策树处理城区决策
时间: 2023-07-19 21:23:45 浏览: 79
以下是一个简单的使用C++编写的决策树,用于处理城区决策问题的示例代码:
```c++
#include <iostream>
#include <string>
#include <vector>
using namespace std;
// 定义决策树节点结构体
struct DecisionTreeNode {
string label; // 当前节点的标签
vector<DecisionTreeNode*> children; // 子节点
};
// 定义决策树类
class DecisionTree {
public:
DecisionTree(DecisionTreeNode* root) : root_(root) {}
~DecisionTree() {
deleteTree(root_);
}
// 预测函数,根据输入特征向量预测输出类别
string predict(const vector<double>& features) {
return predict(root_, features);
}
private:
DecisionTreeNode* root_; // 决策树根节点
// 递归删除决策树
void deleteTree(DecisionTreeNode* node) {
if (node == nullptr) {
return;
}
for (auto child : node->children) {
deleteTree(child);
}
delete node;
}
// 递归预测函数
string predict(DecisionTreeNode* node, const vector<double>& features) {
if (node->children.empty()) {
return node->label; // 叶节点,返回类别标签
}
int feature_index = stoi(node->label);
double feature_value = features[feature_index];
for (auto child : node->children) {
double threshold = stod(child->label);
if (feature_value <= threshold) {
return predict(child, features);
}
}
return predict(node->children.back(), features); // 特殊情况,返回最后一个子节点
}
};
int main() {
// 构造一个城区决策树
DecisionTreeNode* root = new DecisionTreeNode{"0", {}};
root->children.push_back(new DecisionTreeNode{"1", {}});
root->children.push_back(new DecisionTreeNode{"4", {}});
root->children[0]->children.push_back(new DecisionTreeNode{"2", {}});
root->children[0]->children.push_back(new DecisionTreeNode{"3", {}});
root->children[0]->children[0]->children.push_back(new DecisionTreeNode{"4", {}});
root->children[0]->children[0]->children.push_back(new DecisionTreeNode{"5", {}});
root->children[0]->children[1]->children.push_back(new DecisionTreeNode{"6", {}});
root->children[0]->children[1]->children.push_back(new DecisionTreeNode{"7", {}});
root->children[1]->children.push_back(new DecisionTreeNode{"8", {}});
root->children[1]->children.push_back(new DecisionTreeNode{"9", {}});
root->children[1]->children[0]->children.push_back(new DecisionTreeNode{"10", {}});
root->children[1]->children[0]->children.push_back(new DecisionTreeNode{"11", {}});
// 构造一个输入特征向量
vector<double> features{1.2, 3.4, 5.6, 7.8, 9.0};
// 使用决策树进行预测
DecisionTree dt{root};
string result = dt.predict(features);
cout << "Predicted class: " << result << endl;
return 0;
}
```
这里的决策树是手动构造的,每个节点的标签都是特征索引或阈值,叶节点的标签是类别标签。在预测时,根据输入特征向量从根节点开始递归遍历决策树,直到达到叶节点并返回类别标签。
在实际应用中,可以使用一些算法(如C4.5、ID3、CART等)来自动构建决策树,从而处理城区决策问题。
阅读全文