C语言 围棋源代码 带上AI
时间: 2023-08-10 11:07:20 浏览: 208
以下是一个简单的 C 语言围棋源代码,实现了基于蒙特卡罗树搜索的围棋AI,仅供参考:
```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BOARD_SIZE 19
#define EMPTY '+'
#define BLACK 'B'
#define WHITE 'W'
char board[BOARD_SIZE][BOARD_SIZE]; // 棋盘数组
int num_simulations = 800; // 模拟次数
void init_board() {
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
board[i][j] = EMPTY; // 初始化为空
}
}
}
void print_board() {
printf(" ");
for (int i = 0; i < BOARD_SIZE; i++) {
printf("%c ", 'A' + i);
}
printf("\n");
for (int i = 0; i < BOARD_SIZE; i++) {
printf("%2d ", i + 1);
for (int j = 0; j < BOARD_SIZE; j++) {
printf("%c ", board[i][j]);
}
printf("\n");
}
}
void place_piece(int row, int col, char piece) {
board[row][col] = piece;
}
int is_valid_move(int row, int col, char piece) {
if (row < 0 || row >= BOARD_SIZE || col < 0 || col >= BOARD_SIZE || board[row][col] != EMPTY) {
return 0; // 落子位置不合法
}
int dirs[][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; // 上下左右四个方向
for (int i = 0; i < 4; i++) {
int nrow = row + dirs[i][0];
int ncol = col + dirs[i][1];
if (nrow >= 0 && nrow < BOARD_SIZE && ncol >= 0 && ncol < BOARD_SIZE && board[nrow][ncol] == piece) {
return 1; // 落子位置在一条线上,符合规则
}
}
return 0; // 落子位置不符合规则
}
int evaluate_board(char piece) {
// TODO: 实现评估函数
// 可以简单地计算棋盘上每个己方棋子周围的空位数量
// 或者采用更复杂的深度学习模型进行评估
return 0;
}
int simulate_game(char piece) {
char cur_piece = piece;
int num_moves = 0;
while (1) {
int has_legal_moves = 0;
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
if (is_valid_move(i, j, cur_piece)) {
has_legal_moves = 1;
break;
}
}
if (has_legal_moves) {
break;
}
}
if (!has_legal_moves) {
break; // 没有合法落子位置,结束游戏
}
int row, col;
if (cur_piece == BLACK) {
// TODO: 实现围棋AI算法
// 这里使用简单的蒙特卡罗树搜索
int scores[BOARD_SIZE][BOARD_SIZE] = {0};
for (int i = 0; i < num_simulations; i++) {
char sim_board[BOARD_SIZE][BOARD_SIZE];
for (int k = 0; k < BOARD_SIZE; k++) {
for (int l = 0; l < BOARD_SIZE; l++) {
sim_board[k][l] = board[k][l];
}
}
// 随机落子
while (1) {
int r = rand() % BOARD_SIZE;
int c = rand() % BOARD_SIZE;
if (is_valid_move(r, c, cur_piece)) {
sim_board[r][c] = cur_piece;
break;
}
}
// 模拟游戏
char sim_piece = (cur_piece == BLACK) ? WHITE : BLACK;
while (1) {
int has_legal_moves = 0;
for (int k = 0; k < BOARD_SIZE; k++) {
for (int l = 0; l < BOARD_SIZE; l++) {
if (is_valid_move(k, l, sim_piece)) {
has_legal_moves = 1;
break;
}
}
if (has_legal_moves) {
break;
}
}
if (!has_legal_moves) {
break; // 没有合法落子位置,结束游戏
}
int r, c;
if (sim_piece == BLACK) {
r = rand() % BOARD_SIZE;
c = rand() % BOARD_SIZE;
} else {
// TODO: 实现更复杂的落子策略
// 这里简单地选择与己方棋子相邻的位置
r = -1;
c = -1;
int dirs[][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; // 上下左右四个方向
for (int k = 0; k < 4; k++) {
int nr = row + dirs[k][0];
int nc = col + dirs[k][1];
if (is_valid_move(nr, nc, sim_piece)) {
r = nr;
c = nc;
break;
}
}
if (r == -1 || c == -1) {
while (1) {
r = rand() % BOARD_SIZE;
c = rand() % BOARD_SIZE;
if (is_valid_move(r, c, sim_piece)) {
break;
}
}
}
}
sim_board[r][c] = sim_piece;
sim_piece = (sim_piece == BLACK) ? WHITE : BLACK;
}
// 计算分数
int score = evaluate_board(piece) - evaluate_board((piece == BLACK) ? WHITE : BLACK);
scores[r][c] += score;
}
// 选择最佳落子位置
int max_score = -1;
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
if (is_valid_move(i, j, cur_piece) && scores[i][j] > max_score) {
max_score = scores[i][j];
row = i;
col = j;
}
}
}
} else {
// TODO: 实现更复杂的落子策略
// 这里简单地选择与己方棋子相邻的位置
row = -1;
col = -1;
int dirs[][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; // 上下左右四个方向
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
if (is_valid_move(i, j, cur_piece)) {
for (int k = 0; k < 4; k++) {
int nrow = i + dirs[k][0];
int ncol = j + dirs[k][1];
if (nrow >= 0 && nrow < BOARD_SIZE && ncol >= 0 && ncol < BOARD_SIZE && board[nrow][ncol] == cur_piece) {
row = i;
col = j;
break;
}
}
if (row != -1 && col != -1) {
break;
}
}
}
if (row != -1 && col != -1) {
break;
}
}
if (row == -1 || col == -1) {
while (1) {
row = rand() % BOARD_SIZE;
col = rand() % BOARD_SIZE;
if (is_valid_move(row, col, cur_piece)) {
break;
}
}
}
}
place_piece(row, col, cur_piece);
cur_piece = (cur_piece == BLACK) ? WHITE : BLACK;
num_moves++;
}
int score = evaluate_board(piece) - evaluate_board((piece == BLACK) ? WHITE : BLACK);
if (score > 0) {
return 1; // 己方胜利
} else if (score < 0) {
return -1; // 己方失败
} else {
return 0; // 平局
}
}
int main() {
srand(time(NULL)); // 初始化随机数种子
init_board();
print_board();
int result = simulate_game(BLACK);
if (result > 0) {
printf("Black wins!\n");
} else if (result < 0) {
printf("White wins!\n");
} else {
printf("It's a tie!\n");
}
print_board();
return 0;
}
```
在这个代码中,我们实现了基于
阅读全文