使用AverageHash算法编写程序 1.使用python 2.使用摄像头 3.文件夹保存模板图片 4.摄像头显示找到类似的图片
时间: 2024-05-05 15:15:25 浏览: 93
这里是一个使用AverageHash算法编写程序的简单示例:
1. 导入所需库
```python
import cv2
import os
import numpy as np
from PIL import Image
```
2. 定义AverageHash算法
```python
def average_hash(image):
image = cv2.resize(image, (8, 8))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
average = gray.mean()
hash = ""
for i in range(8):
for j in range(8):
if gray[i, j] > average:
hash += "1"
else:
hash += "0"
return hash
```
3. 加载模板图片
```python
template_dir = "template"
template_list = os.listdir(template_dir)
template_hashes = {}
for template_file in template_list:
template_path = os.path.join(template_dir, template_file)
template_image = cv2.imread(template_path)
template_hash = average_hash(template_image)
template_hashes[template_file] = template_hash
```
4. 打开摄像头并匹配模板图片
```python
camera = cv2.VideoCapture(0)
while True:
ret, frame = camera.read()
frame_hash = average_hash(frame)
for template_file, template_hash in template_hashes.items():
hamming_distance = np.count_nonzero([frame_hash[i] != template_hash[i] for i in range(len(frame_hash))])
if hamming_distance < 5:
print("Found template image: " + template_file)
cv2.imshow("Template Image", cv2.imread(os.path.join(template_dir, template_file)))
cv2.imshow("Camera", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
camera.release()
cv2.destroyAllWindows()
```
这个程序会在运行时打开摄像头,并在文件夹中加载模板图片。每一帧从摄像头中读取图像,并使用AverageHash算法计算哈希值。然后,它会将哈希值与每个模板图像的哈希值比较,如果它们非常相似(哈明距离小于5),则会在摄像头窗口中显示找到的模板图像。如果要停止程序,请按“q”键。
阅读全文
相关推荐

















