Pytorch实现NSS-KDD预处理
时间: 2024-06-11 15:06:56 浏览: 46
Pytorch实现TCN-Transformer的时间序列预测(完整源码和数据)
5星 · 资源好评率100%
1. 导入必要的库和模块
```python
import pandas as pd
import numpy as np
import torch
from sklearn.preprocessing import LabelEncoder
```
2. 加载数据集
```python
train = pd.read_csv('dataset/KDDTrain+.txt', header=None)
test = pd.read_csv('dataset/KDDTest+.txt', header=None)
```
3. 对数据进行处理
```python
# 合并训练集和测试集,方便一起处理
data = pd.concat([train, test], axis=0)
# 删除无用的列
data.drop([41], axis=1, inplace=True)
# 对类别特征进行编码
cat_cols = [1, 2, 3]
for col in cat_cols:
label_enc = LabelEncoder()
data.iloc[:, col] = label_enc.fit_transform(data.iloc[:, col])
# 对标签进行编码
label_enc = LabelEncoder()
data.iloc[:, -1] = label_enc.fit_transform(data.iloc[:, -1])
# 将数据转换为numpy数组
data = data.to_numpy()
# 将数据分为特征和标签
x, y = data[:, :-1], data[:, -1]
# 将数据转换为PyTorch张量
x = torch.tensor(x, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.long)
```
4. 划分训练集和测试集
```python
# 划分训练集和测试集
train_size = int(0.8 * len(x))
test_size = len(x) - train_size
train_x, test_x = torch.utils.data.random_split(x, [train_size, test_size])
train_y, test_y = torch.utils.data.random_split(y, [train_size, test_size])
```
5. 数据标准化
```python
# 计算训练集的均值和标准差
mean = torch.mean(train_x, dim=0)
std = torch.std(train_x, dim=0)
# 将训练集和测试集标准化
train_x = (train_x - mean) / std
test_x = (test_x - mean) / std
```
6. 将数据集封装成PyTorch数据集
```python
train_dataset = torch.utils.data.TensorDataset(train_x, train_y)
test_dataset = torch.utils.data.TensorDataset(test_x, test_y)
```
阅读全文