model = RotatE(num_entities=num_entities, num_relations=num_relations, embedding_dim=embedding_dim) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(num_epochs): for pos_heads, pos_relations, pos_tails, neg_heads, neg_relations, neg_tails in train_data_loader: optimizer.zero_grad() loss = model.nssa_loss(pos_heads, pos_relations, pos_tails, neg_heads, neg_relations, neg_tails) loss.backward() optimizer.step() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))对示例中的数据集给出示范
时间: 2024-02-25 09:54:56 浏览: 90
这个示例中的数据集格式应该为三元组 (head, relation, tail),其中 head 和 tail 是实体的标识符,relation 是关系的标识符。训练数据集应该是一个包含正例和负例的列表,每个正例和负例都是一个包含三元组的列表,且正例和负例的数量应该相等。
下面是一个示例数据集和训练代码:
```python
# 示例数据集
train_data = [
[
(0, 0, 1), # 正例1: 实体0和实体1之间存在关系0
(1, 1, 2), # 正例2: 实体1和实体2之间存在关系1
(3, 2, 4) # 正例3: 实体3和实体4之间存在关系2
],
[
(0, 0, 2), # 负例1: 实体0和实体2之间不存在关系0
(1, 0, 2), # 负例2: 实体1和实体2之间不存在关系0
(3, 2, 5) # 负例3: 实体3和实体5之间不存在关系2
]
]
# 建立数据集的 DataLoader
train_data_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
# 建立 RotatE 模型和优化器
model = RotatE(num_entities=num_entities, num_relations=num_relations, embedding_dim=embedding_dim)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
for pos_heads, pos_relations, pos_tails, neg_heads, neg_relations, neg_tails in train_data_loader:
optimizer.zero_grad()
loss = model.nssa_loss(pos_heads, pos_relations, pos_tails, neg_heads, neg_relations, neg_tails)
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
在这个示例中,batch_size 和 num_epochs 都是训练的超参数。pos_heads, pos_relations, pos_tails, neg_heads, neg_relations, neg_tails 分别表示批次中正例和负例的头实体、关系和尾实体。在每次迭代中,模型计算损失并反向传播。通过调整优化器的学习率和其他超参数,可以提高模型的性能。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)